Uniform stability for a spatially discrete, subdiffusive Fokker–Planck equation

被引:0
|
作者
William McLean
Kassem Mustapha
机构
[1] The University of New South Wales,School of Mathematics and Statistics
[2] King Fahd University of Petroleum and Minerals,Department of Mathematics and Statistics
来源
Numerical Algorithms | 2022年 / 89卷
关键词
Fractional calculus; Finite element method; Ritz projector; Discontinuous Galerkin method; Stability analysis; 26A33; 35K20; 65M12; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
We prove stability estimates for the spatially discrete, Galerkin solution of a fractional Fokker–Planck equation, improving on previous results in several respects. Our main goal is to establish that the stability constants are bounded uniformly in the fractional diffusion exponent α ∈ (0,1). In addition, we account for the presence of an inhomogeneous term and show a stability estimate for the gradient of the Galerkin solution. As a by-product, the proofs of error bounds for a standard finite element approximation are simplified.
引用
收藏
页码:1441 / 1463
页数:22
相关论文
共 50 条
  • [31] THE THERMALIZED FOKKER-PLANCK EQUATION
    FRISCH, HL
    NOWAKOWSKI, B
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (11): : 8963 - 8969
  • [32] On Derivation of Fokker-Planck Equation
    Tanatarov, L. V.
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2013, 35 (01): : 95 - 111
  • [33] EXTENSION OF FOKKER-PLANCK EQUATION
    PRICE, JC
    PHYSICS OF FLUIDS, 1966, 9 (12) : 2408 - &
  • [34] QUANTUM FOKKER-PLANCK EQUATION
    CHANG, LD
    WAXMAN, D
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1985, 18 (31): : 5873 - 5879
  • [35] PROPERTIES OF FOKKER-PLANCK EQUATION
    LIBOFF, RL
    FEDELE, JB
    PHYSICS OF FLUIDS, 1967, 10 (07) : 1391 - +
  • [36] PROPERTY OF FOKKER-PLANCK EQUATION
    COMBIS, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (06): : 473 - 476
  • [37] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [38] The Fokker–Planck Equation, and Stationary Densities
    Amir Aghamohammadi
    Mohammad Khorrami
    International Journal of Theoretical Physics, 2008, 47 : 1630 - 1638
  • [39] The differential equation of Fokker-Planck
    Bernstein, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1933, 196 : 1062 - 1064
  • [40] FOKKER-PLANCK-VLASOV EQUATION
    HEBEKER, FK
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1980, 60 (7BIS): : T253 - T254