Some Inverse Problems in Periodic Homogenization of Hamilton-Jacobi Equations

被引:0
|
作者
Songting Luo
Hung V. Tran
Yifeng Yu
机构
[1] Iowa State University,Department of Mathematics
[2] University of Wisconsin Madison,Department of Mathematics
[3] University of California at Irvine,Department of Mathematics
关键词
Inverse Problem; Viscosity Solution; Cell Problem; Diophantine Condition; Periodic Homogenization;
D O I
暂无
中图分类号
学科分类号
摘要
We look at the effective Hamiltonian H¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{H}}$$\end{document} associated with the Hamiltonian H(p,x)=H(p)+V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H(p,x)=H(p)+V(x)}$$\end{document} in the periodic homogenization theory. Our central goal is to understand the relation between V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V}$$\end{document} and H¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{H}}$$\end{document}. We formulate some inverse problems concerning this relation. Such types of inverse problems are, in general, very challenging. In this paper, we discuss several special cases in both convex and nonconvex settings.
引用
收藏
页码:1585 / 1617
页数:32
相关论文
共 50 条
  • [1] Some Inverse Problems in Periodic Homogenization of Hamilton-Jacobi Equations
    Luo, Songting
    Tran, Hung V.
    Yu, Yifeng
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (03) : 1585 - 1617
  • [2] Homogenization of some periodic Hamilton-Jacobi equations with defects
    Achdou, Yves
    Le Bris, Claude
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2023, 48 (06) : 944 - 986
  • [3] SLOW PERIODIC HOMOGENIZATION FOR HAMILTON-JACOBI EQUATIONS
    Cooperman, William
    arXiv, 2023,
  • [4] Perturbation problems in homogenization of Hamilton-Jacobi equations
    Cardaliaguet, Pierre
    Le Bris, Claude
    Souganidis, Panagiotis E.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 117 : 221 - 262
  • [5] Stochastic homogenization of Hamilton-Jacobi equations and some applications
    Souganidis, PE
    ASYMPTOTIC ANALYSIS, 1999, 20 (01) : 1 - 11
  • [6] LOSS OF QUASICONVEXITY IN THE PERIODIC HOMOGENIZATION OF VISCOUS HAMILTON-JACOBI EQUATIONS
    Kosygina, Elena
    Yilmaz, Atilla
    arXiv, 2023,
  • [7] Homogenization of pathwise Hamilton-Jacobi equations
    Seeger, Benjamin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 110 : 1 - 31
  • [8] Homogenization for stochastic Hamilton-Jacobi equations
    Rezakhanlou, F
    Tarver, JE
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 151 (04) : 277 - 309
  • [9] HOMOGENIZATION OF METRIC HAMILTON-JACOBI EQUATIONS
    Oberman, Adam M.
    Takei, Ryo
    Vladimirsky, Alexander
    MULTISCALE MODELING & SIMULATION, 2009, 8 (01): : 269 - 295
  • [10] Homogenization for¶Stochastic Hamilton-Jacobi Equations
    Fraydoun Rezakhanlou
    James E. Tarver
    Archive for Rational Mechanics and Analysis, 2000, 151 : 277 - 309