Some Inverse Problems in Periodic Homogenization of Hamilton-Jacobi Equations

被引:13
|
作者
Luo, Songting [1 ]
Tran, Hung V. [2 ]
Yu, Yifeng [3 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Univ Wisconsin, Dept Math, Van Vleck Hall,480 Lincoln Dr, Madison, WI 53706 USA
[3] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
DYNAMICS;
D O I
10.1007/s00205-016-0993-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We look at the effective Hamiltonian associated with the Hamiltonian in the periodic homogenization theory. Our central goal is to understand the relation between and . We formulate some inverse problems concerning this relation. Such types of inverse problems are, in general, very challenging. In this paper, we discuss several special cases in both convex and nonconvex settings.
引用
收藏
页码:1585 / 1617
页数:33
相关论文
共 50 条
  • [1] Some Inverse Problems in Periodic Homogenization of Hamilton-Jacobi Equations
    Songting Luo
    Hung V. Tran
    Yifeng Yu
    Archive for Rational Mechanics and Analysis, 2016, 221 : 1585 - 1617
  • [2] Homogenization of some periodic Hamilton-Jacobi equations with defects
    Achdou, Yves
    Le Bris, Claude
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2023, 48 (06) : 944 - 986
  • [3] SLOW PERIODIC HOMOGENIZATION FOR HAMILTON-JACOBI EQUATIONS
    Cooperman, William
    arXiv, 2023,
  • [4] Perturbation problems in homogenization of Hamilton-Jacobi equations
    Cardaliaguet, Pierre
    Le Bris, Claude
    Souganidis, Panagiotis E.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 117 : 221 - 262
  • [5] Stochastic homogenization of Hamilton-Jacobi equations and some applications
    Souganidis, PE
    ASYMPTOTIC ANALYSIS, 1999, 20 (01) : 1 - 11
  • [6] LOSS OF QUASICONVEXITY IN THE PERIODIC HOMOGENIZATION OF VISCOUS HAMILTON-JACOBI EQUATIONS
    Kosygina, Elena
    Yilmaz, Atilla
    arXiv, 2023,
  • [7] Homogenization of pathwise Hamilton-Jacobi equations
    Seeger, Benjamin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 110 : 1 - 31
  • [8] Homogenization for stochastic Hamilton-Jacobi equations
    Rezakhanlou, F
    Tarver, JE
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 151 (04) : 277 - 309
  • [9] HOMOGENIZATION OF METRIC HAMILTON-JACOBI EQUATIONS
    Oberman, Adam M.
    Takei, Ryo
    Vladimirsky, Alexander
    MULTISCALE MODELING & SIMULATION, 2009, 8 (01): : 269 - 295
  • [10] Homogenization for¶Stochastic Hamilton-Jacobi Equations
    Fraydoun Rezakhanlou
    James E. Tarver
    Archive for Rational Mechanics and Analysis, 2000, 151 : 277 - 309