Some Inverse Problems in Periodic Homogenization of Hamilton-Jacobi Equations

被引:0
|
作者
Songting Luo
Hung V. Tran
Yifeng Yu
机构
[1] Iowa State University,Department of Mathematics
[2] University of Wisconsin Madison,Department of Mathematics
[3] University of California at Irvine,Department of Mathematics
关键词
Inverse Problem; Viscosity Solution; Cell Problem; Diophantine Condition; Periodic Homogenization;
D O I
暂无
中图分类号
学科分类号
摘要
We look at the effective Hamiltonian H¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{H}}$$\end{document} associated with the Hamiltonian H(p,x)=H(p)+V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H(p,x)=H(p)+V(x)}$$\end{document} in the periodic homogenization theory. Our central goal is to understand the relation between V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V}$$\end{document} and H¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{H}}$$\end{document}. We formulate some inverse problems concerning this relation. Such types of inverse problems are, in general, very challenging. In this paper, we discuss several special cases in both convex and nonconvex settings.
引用
收藏
页码:1585 / 1617
页数:32
相关论文
共 50 条