Hydrothermally Processed Photosensitive Field-Effect Transistor Based on ZnO Nanorod Networks

被引:0
|
作者
Ashish Kumar
Kshitij Bhargava
Tejendra Dixit
I. A. Palani
Vipul Singh
机构
[1] Indian Institute of Technology Indore,Molecular and Nanoelectronics Research Group (MNRG), Department of Electrical Engineering
[2] Indian Institute of Technology Indore,Mechatronics and Instrumentation Lab, Department of Mechanical Engineering
来源
关键词
Hydrothermal; ZnO; nanorod networks; photosensitivity; field-effect transistor;
D O I
暂无
中图分类号
学科分类号
摘要
Formation of a stable, reproducible zinc oxide (ZnO) nanorod-network-based photosensitive field-effect transistor using a hydrothermal process at low temperature has been demonstrated. K2Cr2O7 additive was used to improve adhesion and facilitate growth of the ZnO nanorod network over the SiO2/Si substrate. Transistor characteristics obtained in the dark resemble those of the n-channel-mode field-effect transistor (FET). The devices showed Ion/Ioff ratio above 8 × 102 under dark condition, field-effect mobility of 4.49 cm2 V−1 s−1, and threshold voltage of −12 V. Further, under ultraviolet (UV) illumination, the FET exhibited sensitivity of 2.7 × 102 in off-state (−10 V) versus 1.4 in on-state (+9.7 V) of operation. FETs based on such nanorod networks showed good photoresponse, which is attributed to the large surface area of the nanorod network. The growth temperature for ZnO nanorod networks was kept at 110°C, enabling a low-temperature, cost-effective, simple approach for high-performance ZnO-based FETs for large-scale production. The role of network interfaces in the FET performance is also discussed.
引用
收藏
页码:5606 / 5611
页数:5
相关论文
共 50 条
  • [31] Infrared spectroscopy of the interface charge in a ZnO field-effect transistor
    Kim, Jooyoun
    Jung, SungHoon
    Choi, E. J.
    Kim, Kitae
    Lee, Kimoon
    Im, Seongil
    APPLIED PHYSICS LETTERS, 2008, 93 (24)
  • [32] Solution-processed polyfluorene-ZnO nanoparticles ambipolar light-emitting field-effect transistor
    Aleshin, Andrey N.
    Shcherbakov, Igor P.
    Petrov, Vasily N.
    Titkov, Alexander N.
    ORGANIC ELECTRONICS, 2011, 12 (08) : 1285 - 1292
  • [33] FIELD-EFFECT TRANSISTOR
    GULDENPFENNIG, P
    ELEKTROTECHNISCHE ZEITSCHRIFT B-AUSGABE, 1968, 20 (17): : 474 - +
  • [34] Solution-Processed Perovskite Field-Effect Transistor Artificial Synapses
    Jeong, Beomjin
    Gkoupidenis, Paschalis
    Asadi, Kamal
    ADVANCED MATERIALS, 2021, 33 (52)
  • [35] Highly sensitive hydrazine chemical sensor based on ZnO nanorods field-effect transistor
    Ahmad, Rafiq
    Tripathy, Nirmalya
    Jung, Da-Un-Jin
    Hahn, Yoon-Bong
    CHEMICAL COMMUNICATIONS, 2014, 50 (15) : 1890 - 1893
  • [36] pH Sensing Characteristics of Extended-Gate Field-Effect Transistor Based on Al-Doped ZnO Nanostructures Hydrothermally Synthesized at Low Temperatures
    Yang, Po-Yu
    Wang, Jyh-Liang
    Chiu, Po-Chun
    Chou, Jung-Chuan
    Chen, Cheng-Wei
    Li, Hung-Hsien
    Cheng, Huang-Chung
    IEEE ELECTRON DEVICE LETTERS, 2011, 32 (11) : 1603 - 1605
  • [37] MULTIPLIER DEVICE BASED ON A FIELD-EFFECT TRANSISTOR
    IGUMNOV, BN
    KAMLIYA, RA
    MAILOV, GM
    RUDENKO, VS
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1976, 19 (02) : 369 - 370
  • [38] Field-effect transistor based on β-SiC nanowire
    Zhou, W. M.
    Fang, F.
    Hou, Z. Y.
    Yan, L. J.
    Zhang, Y. F.
    IEEE ELECTRON DEVICE LETTERS, 2006, 27 (06) : 463 - 465
  • [39] Lateral piezopotential-gated field-effect transistor of ZnO nanowires
    Xu, Zhi
    Zhang, Chao
    Wang, Wenlong
    Bando, Yoshio
    Bai, Xuedong
    Golberg, Dmitri
    NANO ENERGY, 2015, 13 : 233 - 239
  • [40] Influence of stabilizers in ZnO nanodispersions on field-effect transistor device performance
    Bubel, Simon
    Nikolova, Donna
    Mechau, Norman
    Hahn, Horst
    Journal of Applied Physics, 2009, 105 (06):