On 5-regular bipartitions with even parts distinct

被引:0
|
作者
M. S. Mahadeva Naika
T. Harishkumar
机构
[1] Bangalore University,Department of Mathematics, Central College Campus
来源
The Ramanujan Journal | 2019年 / 50卷
关键词
Partition identities; Theta-functions; Partition congruences; Regular bipartition; 11P83; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
In 2010, Andrews, Michael D. Hirschhorn and James A. Sellers considered the function ped(n), the number of partition of an integer n with even parts distinct (the odd parts are unrestricted). They obtained infinite families of congruences in the spirit of Ramanujan’s congruences for the unrestricted partition function p(n). Let b(n) denote the number of 5-regular bipartitions of a positive integer n with even parts distinct (odd parts are unrestricted). In this paper, we establish many infinite families of congruences modulo powers of 2 for b(n). For example, ∑n=0∞b16·32α·52βn+14·32α·52β+1qn≡8f23f53(mod16),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{n=0}^{\infty } b\left(16\cdot 3^{2\alpha }\cdot 5^{2\beta }n+14\cdot 3^{2\alpha }\cdot 5^{2\beta }+1\right) q^n \equiv 8f_2^3f_5^3 \pmod {16} , \end{aligned}$$\end{document}where α,β≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta \ge 0$$\end{document}.
引用
收藏
页码:573 / 587
页数:14
相关论文
共 50 条
  • [1] On 5-regular bipartitions with even parts distinct
    Naika, M. S. Mahadeva
    Harishkumar, T.
    RAMANUJAN JOURNAL, 2019, 50 (03): : 573 - 587
  • [2] On 9-regular bipartitions with distinct even parts
    V. S. Veena
    S. N. Fathima
    The Journal of Analysis, 2023, 31 : 951 - 962
  • [3] On 9-regular bipartitions with distinct even parts
    Veena, V. S.
    Fathima, S. N.
    JOURNAL OF ANALYSIS, 2023, 31 (02): : 951 - 962
  • [4] Arithmetic properties of 5-regular bipartitions
    Naika, M. S. Mahadeva
    Hemanthkumar, B.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (04) : 937 - 956
  • [5] On (4, 5)-regular bipartitions with odd parts distinct
    Naika, M. S. Mahadeva
    Harishkumar, T.
    TBILISI MATHEMATICAL JOURNAL, 2019, 12 (03) : 191 - 208
  • [6] Arithmetic properties of 5-regular partitions into distinct parts
    Baruah, Nayandeep Deka
    Sarma, Abhishek
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025, 21 (03) : 657 - 674
  • [7] Arithmetic properties of bipartitions with even parts distinct
    Lin, Bernard L. S.
    RAMANUJAN JOURNAL, 2014, 33 (02): : 269 - 279
  • [8] Arithmetic properties of bipartitions with even parts distinct
    Bernard L. S. Lin
    The Ramanujan Journal, 2014, 33 : 269 - 279
  • [9] Congruences for the number of partitions and bipartitions with distinct even parts
    Dai, Haobo
    DISCRETE MATHEMATICS, 2015, 338 (03) : 133 - 138
  • [10] Congruences modulo 16, 32 and 64 for bipartitions with distinct even parts
    Liu, Eric H.
    Yao, Olivia X. M.
    Zhao, Tao Yan
    ARS COMBINATORIA, 2018, 140 : 301 - 310