Quantum walking in curved spacetime

被引:0
|
作者
Pablo Arrighi
Stefano Facchini
Marcelo Forets
机构
[1] Aix-Marseille University,LIF
[2] University of Grenoble Alpes,LIG
来源
关键词
Paired QWs; Lattice quantum field theory; Quantum simulation;
D O I
暂无
中图分类号
学科分类号
摘要
A discrete-time quantum walk (QW) is essentially a unitary operator driving the evolution of a single particle on the lattice. Some QWs admit a continuum limit, leading to familiar PDEs (e.g., the Dirac equation). In this paper, we study the continuum limit of a wide class of QWs and show that it leads to an entire class of PDEs, encompassing the Hamiltonian form of the massive Dirac equation in (1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document}) curved spacetime. Therefore, a certain QW, which we make explicit, provides us with a unitary discrete toy model of a test particle in curved spacetime, in spite of the fixed background lattice. Mathematically, we have introduced two novel ingredients for taking the continuum limit of a QW, but which apply to any quantum cellular automata: encoding and grouping.
引用
收藏
页码:3467 / 3486
页数:19
相关论文
共 50 条
  • [21] Quantum field simulator for dynamics in curved spacetime
    Celia Viermann
    Marius Sparn
    Nikolas Liebster
    Maurus Hans
    Elinor Kath
    Álvaro Parra-López
    Mireia Tolosa-Simeón
    Natalia Sánchez-Kuntz
    Tobias Haas
    Helmut Strobel
    Stefan Floerchinger
    Markus K. Oberthaler
    [J]. Nature, 2022, 611 : 260 - 264
  • [22] The Phase of a Quantum Mechanical Particle in Curved Spacetime
    P. M. Alsing
    J. C. Evans
    K. K. Nandi
    [J]. General Relativity and Gravitation, 2001, 33 : 1459 - 1487
  • [23] Superconformal quantum field theory in curved spacetime
    de Medeiros, Paul
    Hollands, Stefan
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (17)
  • [24] Temperatures of renormalizable quantum field theories in curved spacetime
    Lynch, Morgan H.
    Afshordi, Niayesh
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (22)
  • [25] QUANTUM-GEOMETRIC FIELD PROPAGATION IN CURVED SPACETIME
    PRUGOVECKI, E
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (08) : 1981 - 1994
  • [26] Introduction to quantum fields in curved spacetime and the Hawking effect
    Jacobson, T
    [J]. Lectures on Quantum Gravity, 2005, : 39 - 89
  • [27] Generalized uncertainty principle for quantum fields in curved spacetime
    Crowell, LB
    [J]. FOUNDATIONS OF PHYSICS LETTERS, 1999, 12 (06) : 585 - 591
  • [28] On quantum-geometric connections and propagators in curved spacetime
    Prugovecki, E
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (05) : 1007 - 1021
  • [29] QUANTUM MANY-PARTICLE SYSTEMS IN CURVED SPACETIME
    ICHONOSE, I
    [J]. PHYSICS LETTERS B, 1980, 94 (02) : 269 - 271
  • [30] Gaussian quantum steering and its asymmetry in curved spacetime
    Wang, Jieci
    Cao, Haixin
    Jing, Jiliang
    Fan, Heng
    [J]. PHYSICAL REVIEW D, 2016, 93 (12)