Quantum field simulator for dynamics in curved spacetime

被引:0
|
作者
Celia Viermann
Marius Sparn
Nikolas Liebster
Maurus Hans
Elinor Kath
Álvaro Parra-López
Mireia Tolosa-Simeón
Natalia Sánchez-Kuntz
Tobias Haas
Helmut Strobel
Stefan Floerchinger
Markus K. Oberthaler
机构
[1] Universität Heidelberg,Kirchhoff
[2] Universität Heidelberg,Institut für Physik
[3] Universidad Complutense de Madrid,Institut für Theoretische Physik
[4] Ciudad Universitaria,Departamento de Física Teórica and IPARCOS, Facultad de Ciencias Físicas
[5] Ruhr-Universität Bochum,Institut für Theoretische Physik III
[6] Université libre de Bruxelles,Centre for Quantum Information and Communication, École polytechnique de Bruxelles, CP 165/59
[7] Friedrich-Schiller-Universität Jena,Theoretisch
来源
Nature | 2022年 / 611卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In most cosmological models, rapid expansion of space marks the first moments of the Universe and leads to the amplification of quantum fluctuations1. The description of subsequent dynamics and related questions in cosmology requires an understanding of the quantum fields of the standard model and dark matter in curved spacetime. Even the reduced problem of a scalar quantum field in an explicitly time-dependent spacetime metric is a theoretical challenge2–5, and thus a quantum field simulator can lead to insights. Here we demonstrate such a quantum field simulator in a two-dimensional Bose–Einstein condensate with a configurable trap6,7 and adjustable interaction strength to implement this model system. We explicitly show the realization of spacetimes with positive and negative spatial curvature by wave-packet propagation and observe particle-pair production in controlled power-law expansion of space, using Sakharov oscillations to extract amplitude and phase information of the produced state. We find quantitative agreement with analytical predictions for different curvatures in time and space. This benchmarks and thereby establishes a quantum field simulator of a new class. In the future, straightforward upgrades offer the possibility to enter unexplored regimes that give further insight into relativistic quantum field dynamics.
引用
收藏
页码:260 / 264
页数:4
相关论文
共 50 条
  • [1] Quantum field simulator for dynamics in curved spacetime
    Viermann, Celia
    Sparn, Marius
    Liebster, Nikolas
    Hans, Maurus
    Kath, Elinor
    Parra-Lopez, Alvaro
    Tolosa-Simeon, Mireia
    Sanchez-Kuntz, Natalia
    Haas, Tobias
    Strobel, Helmut
    Floerchinger, Stefan
    Oberthaler, Markus K.
    [J]. NATURE, 2022, 611 (7935) : 260 - +
  • [2] Quantum field theory in curved spacetime
    Hollands, Stefan
    [J]. UNIVERSALITY AND RENORMALIZATION: FROM STOCHASTIC EVOLUTION TO RENORMALIZATION OF QUANTUM FIELDS, 2007, 50 : 131 - 149
  • [3] QUANTUM-FIELD THEORY IN CURVED SPACETIME
    KAY, BS
    [J]. DIFFERENTIAL GEOMETRICAL METHODS IN THEORETICAL PHYSICS, 1988, 250 : 373 - 393
  • [4] Axiomatic Quantum Field Theory in Curved Spacetime
    Hollands, Stefan
    Wald, Robert M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 293 (01) : 85 - 125
  • [5] Axiomatic Quantum Field Theory in Curved Spacetime
    Stefan Hollands
    Robert M. Wald
    [J]. Communications in Mathematical Physics, 2010, 293 : 85 - 125
  • [6] Superconformal quantum field theory in curved spacetime
    de Medeiros, Paul
    Hollands, Stefan
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (17)
  • [7] Atom-field dynamics in curved spacetime
    Bukhari, Syed Masood A. S.
    Wang, Li-Gang
    [J]. FRONTIERS OF PHYSICS, 2024, 19 (05)
  • [8] Temperatures of renormalizable quantum field theories in curved spacetime
    Lynch, Morgan H.
    Afshordi, Niayesh
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (22)
  • [9] QUANTUM-GEOMETRIC FIELD PROPAGATION IN CURVED SPACETIME
    PRUGOVECKI, E
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (08) : 1981 - 1994
  • [10] Quantum spacetime on a quantum simulator
    Li, Keren
    Li, Youning
    Han, Muxin
    Lu, Sirui
    Zhou, Jie
    Ruan, Dong
    Long, Guilu
    Wan, Yidun
    Lu, Dawei
    Zeng, Bei
    Laflamme, Raymond
    [J]. COMMUNICATIONS PHYSICS, 2019, 2 (1)