On the Unital C*-Algebras Generated by Certain Subnormal Tuples

被引:0
|
作者
Ameer Athavale
机构
[1] Indian Institute of Technology Bombay,Department of Mathematics
来源
Integral Equations and Operator Theory | 2010年 / 68卷
关键词
Primary 47B20; Subnormal; Ext;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an important class of subnormal operator m-tuples Mp (p = m,m + 1, . . .) that is associated with a class of reproducing kernel Hilbert spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal H}_p}$$\end{document} (with Mm being the multiplication tuple on the Hardy space of the open unit ball \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb B}^{2m}}$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb C}^m}$$\end{document} and Mm+1 being the multiplication tuple on the Bergman space of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb B}^{2m}}$$\end{document}). Given any two C*-algebras \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal B}$$\end{document} from the collection \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{C^*({M}_p), C^*({\tilde M}_p): p \geq m\}}$$\end{document} , where C*(Mp) is the unital C*-algebra generated by Mp and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^*({\tilde M}_p)}$$\end{document} the unital C*-algebra generated by the dual \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\tilde M}_p}$$\end{document} of Mp, we verify that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal B}$$\end{document} are either *-isomorphic or that there is no homotopy equivalence between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal B}$$\end{document} . For example, while C*(Mm) and C*(Mm+1) are well-known to be *-isomorphic, we find that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^*({\tilde M}_m)}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^*({\tilde M}_{m+1})}$$\end{document} are not even homotopy equivalent; on the other hand, C*(Mm) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^*({\tilde M}_{m})}$$\end{document} are indeed *-isomorphic. Our arguments rely on the BDF-theory and K-theory.
引用
收藏
页码:255 / 262
页数:7
相关论文
共 50 条
  • [21] Commutators close to the identity in unital C*-algebras
    Krishna, K. Mahesh
    Johnson, P. Sam
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (01):
  • [22] C*-ALGEBRAS WITH MULTIPLE SUBNORMAL GENERATORS
    Feldman, Nathan S.
    McGuire, Paul J.
    JOURNAL OF OPERATOR THEORY, 2008, 60 (02) : 429 - 443
  • [23] Subnormal and hyponormal generators of C*-algebras
    Feldman, NS
    McGuire, P
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 231 (02) : 458 - 499
  • [24] A Commutator Formula for Subnormal Tuples of Operators
    Xia, Daoxing
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (03) : 381 - 392
  • [25] A Commutator Formula for Subnormal Tuples of Operators
    Daoxing Xia
    Integral Equations and Operator Theory, 2015, 83 : 381 - 392
  • [26] A TRACE FORMULA FOR SUBNORMAL OPERATOR TUPLES
    PINCUS, JD
    XIA, D
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1991, 14 (03) : 390 - 398
  • [27] Existence and uniqueness of the Karcher mean on unital C*-algebras
    Lawson, Jimmie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (02)
  • [28] THE UNITAL EXT-GROUPS AND CLASSIFICATION OF C*-ALGEBRAS
    Gabe, James
    Ruiz, Efren
    GLASGOW MATHEMATICAL JOURNAL, 2020, 62 (01) : 201 - 231
  • [29] Nearly Jordan *-Homomorphisms between Unital C*-Algebras
    Ebadian, A.
    Gharetapeh, S. Kaboli
    Gordji, M. Eshaghi
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [30] Geometric classification of isomorphism of unital graph C*-algebras
    Arklint, Sara E.
    Eilers, Soren
    Ruiz, Efren
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 927 - 957