On the Unital C*-Algebras Generated by Certain Subnormal Tuples

被引:0
|
作者
Ameer Athavale
机构
[1] Indian Institute of Technology Bombay,Department of Mathematics
来源
Integral Equations and Operator Theory | 2010年 / 68卷
关键词
Primary 47B20; Subnormal; Ext;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an important class of subnormal operator m-tuples Mp (p = m,m + 1, . . .) that is associated with a class of reproducing kernel Hilbert spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal H}_p}$$\end{document} (with Mm being the multiplication tuple on the Hardy space of the open unit ball \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb B}^{2m}}$$\end{document} in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb C}^m}$$\end{document} and Mm+1 being the multiplication tuple on the Bergman space of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb B}^{2m}}$$\end{document}). Given any two C*-algebras \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal B}$$\end{document} from the collection \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{C^*({M}_p), C^*({\tilde M}_p): p \geq m\}}$$\end{document} , where C*(Mp) is the unital C*-algebra generated by Mp and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^*({\tilde M}_p)}$$\end{document} the unital C*-algebra generated by the dual \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\tilde M}_p}$$\end{document} of Mp, we verify that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal B}$$\end{document} are either *-isomorphic or that there is no homotopy equivalence between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal A}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal B}$$\end{document} . For example, while C*(Mm) and C*(Mm+1) are well-known to be *-isomorphic, we find that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^*({\tilde M}_m)}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^*({\tilde M}_{m+1})}$$\end{document} are not even homotopy equivalent; on the other hand, C*(Mm) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^*({\tilde M}_{m})}$$\end{document} are indeed *-isomorphic. Our arguments rely on the BDF-theory and K-theory.
引用
收藏
页码:255 / 262
页数:7
相关论文
共 50 条
  • [11] ISOMORPHISMS IN UNITAL C*-ALGEBRAS
    Park, C.
    Rassias, Th. M.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2010, 1 (02): : 1 - 10
  • [12] Coactions of a finite-dimensional C*-Hopf algebra on unital C*-algebras, unital inclusions of unital C*-algebras and strong Morita equivalence
    Kodaka, Kazunori
    Teruya, Tamotsu
    STUDIA MATHEMATICA, 2020, 256 (02) : 169 - 185
  • [13] ON THE DUALS OF SUBNORMAL TUPLES
    ATHAVALE, A
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1989, 12 (03) : 305 - 323
  • [14] Isomorphisms between unital C*-algebras
    Park, CG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (02) : 753 - 762
  • [16] APPROXIMATELY *-DERIVATIONS IN UNITAL C*-ALGEBRAS
    Gordji, M. Eshaghi
    Gharetapeh, S. Kaboli
    Bidkham, M.
    Hosseinioun, S. A. R.
    MATHEMATICAL REPORTS, 2012, 14 (01): : 31 - 41
  • [17] Commutators close to the identity in unital C*-algebras
    K Mahesh Krishna
    P Sam Johnson
    Proceedings - Mathematical Sciences, 2022, 132
  • [18] JORDAN *-HOMOMORPHISMS BETWEEN UNITAL C*-ALGEBRAS
    Gordji, Madjid Eshaghi
    Ghobadipour, Norooz
    Park, Choonkil
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 27 (01): : 149 - 158
  • [19] CENTRAL SEQUENCES IN SUBHGOMOGENEOUS UNITAL C*-ALGEBRAS
    Hadwin, Don
    Pendharkar, Hemant
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 103 (02) : 318 - 325
  • [20] Nearly higher derivations in unital C*-algebras
    Gordji, M. Eshaghi
    Rostami, R. Farokhzad
    Hosseinioun, S. A. R.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (04) : 734 - 742