Cleaning Random d-Regular Graphs with Brooms

被引:0
|
作者
Paweł Prałat
机构
[1] West Virginia University,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Cleaning with brushes; Cleaning with Brooms; Random ; -regular graphs; Differential equations method; Graph searching;
D O I
暂无
中图分类号
学科分类号
摘要
A model for cleaning a graph with brushes was recently introduced. Let α = (v1, v2, . . . , vn) be a permutation of the vertices of G; for each vertex vi let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^-(v_i)=\{j: v_j v_i \in E {\rm and} j<\,i\}}$$\end{document} ; finally let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_{\alpha}(G)=\sum_{i=1}^n {\rm max}\{|N^+(v_i)|-|N^-(v_i)|,0\}}$$\end{document}. The Broom number is given by B(G) =  maxαbα(G). We consider the Broom number of d-regular graphs, focusing on the asymptotic number for random d-regular graphs. Various lower and upper bounds are proposed. To get an asymptotically almost sure lower bound we use a degree-greedy algorithm to clean a random d-regular graph on n vertices (with dn even) and analyze it using the differential equations method (for fixed d). We further show that for any d-regular graph on n vertices there is a cleaning sequence such at least n(d + 1)/4 brushes are needed to clean a graph using this sequence. For an asymptotically almost sure upper bound, the pairing model is used to show that at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n(d+2\sqrt{d \ln 2})/4}$$\end{document} brushes can be used when a random d-regular graph is cleaned. This implies that for fixed large d, the Broom number of a random d-regular graph on n vertices is asymptotically almost surely \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{n}{4}(d+\Theta(\sqrt{d}))}$$\end{document}.
引用
收藏
页码:567 / 584
页数:17
相关论文
共 50 条
  • [31] Distributed Average Consensus Algorithms in d-Regular Bipartite Graphs: Comparative Study
    Kenyeres, Martin
    Kenyeres, Jozef
    FUTURE INTERNET, 2023, 15 (05):
  • [32] The Maximum of the Maximum Rectilinear Crossing Numbers of d-regular Graphs of Order n
    Alpert, Matthew
    Feder, Elie
    Harborth, Heiko
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [33] Satisfiability threshold of the strictly d-regular random (3, s)-SAT problem
    Wang Yong-ping
    Xu Dao-yun
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 419 - 424
  • [34] On d-regular schematization of embedded paths
    Delling, Daniel
    Gemsa, Andreas
    Noellenburg, Martin
    Pajor, Thomas
    Rutter, Ignaz
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (03): : 381 - 406
  • [35] On d-Regular Schematization of Embedded Paths
    Gemsa, Andreas
    Noellenburg, Martin
    Pajor, Thomas
    Rutter, Ignaz
    SOFSEM 2011: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2011, 6543 : 260 - 271
  • [36] Cleaning with Brooms
    Margaret-Ellen Messinger
    Richard J. Nowakowski
    Paweł Prałat
    Graphs and Combinatorics, 2011, 27 : 251 - 267
  • [37] Cleaning with Brooms
    Messinger, Margaret-Ellen
    Nowakowski, Richard J.
    Pralat, Pawel
    GRAPHS AND COMBINATORICS, 2011, 27 (02) : 251 - 267
  • [38] Colorings of the d-regular infinite tree
    Hoory, S
    Linial, N
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (02) : 161 - 167
  • [39] A new NC-algorithm for finding a perfect matching in d-regular bipartite graphs when d is small
    Kulkarni, Raghav
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2006, 3998 : 308 - 319
  • [40] CLEANING REGULAR GRAPHS WITH BRUSHES
    Alon, Noga
    Pralat, Pawel
    Wormald, Nicholas
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 23 (01) : 233 - 250