Cleaning Random d-Regular Graphs with Brooms

被引:0
|
作者
Paweł Prałat
机构
[1] West Virginia University,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Cleaning with brushes; Cleaning with Brooms; Random ; -regular graphs; Differential equations method; Graph searching;
D O I
暂无
中图分类号
学科分类号
摘要
A model for cleaning a graph with brushes was recently introduced. Let α = (v1, v2, . . . , vn) be a permutation of the vertices of G; for each vertex vi let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^-(v_i)=\{j: v_j v_i \in E {\rm and} j<\,i\}}$$\end{document} ; finally let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_{\alpha}(G)=\sum_{i=1}^n {\rm max}\{|N^+(v_i)|-|N^-(v_i)|,0\}}$$\end{document}. The Broom number is given by B(G) =  maxαbα(G). We consider the Broom number of d-regular graphs, focusing on the asymptotic number for random d-regular graphs. Various lower and upper bounds are proposed. To get an asymptotically almost sure lower bound we use a degree-greedy algorithm to clean a random d-regular graph on n vertices (with dn even) and analyze it using the differential equations method (for fixed d). We further show that for any d-regular graph on n vertices there is a cleaning sequence such at least n(d + 1)/4 brushes are needed to clean a graph using this sequence. For an asymptotically almost sure upper bound, the pairing model is used to show that at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n(d+2\sqrt{d \ln 2})/4}$$\end{document} brushes can be used when a random d-regular graph is cleaned. This implies that for fixed large d, the Broom number of a random d-regular graph on n vertices is asymptotically almost surely \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{n}{4}(d+\Theta(\sqrt{d}))}$$\end{document}.
引用
收藏
页码:567 / 584
页数:17
相关论文
共 50 条
  • [21] Percolating level sets of the adjacency eigenvectors of d-regular graphs
    Elon, Yehonatan
    Smilansky, Uzy
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (45)
  • [22] COUNTING IN TWO-SPIN MODELS ON d-REGULAR GRAPHS
    Sly, Allan
    Sun, Nike
    ANNALS OF PROBABILITY, 2014, 42 (06): : 2383 - 2416
  • [23] d-Regular Graphs of Acyclic Chromatic Index at Least d+2
    Basavaraju, Manu
    Chandran, L. Sunil
    Kummini, Manoj
    JOURNAL OF GRAPH THEORY, 2010, 63 (03) : 226 - 230
  • [24] Decay of correlations for the hardcore model on the d-regular random graph
    Bhatnagar, Nayantara
    Sly, Allan
    Tetali, Prasad
    ELECTRONIC JOURNAL OF PROBABILITY, 2016, 21
  • [25] Giant vacant component left by a random walk in a random d-regular graph
    Cerny, Jiri
    Teixeira, Augusto
    Windisch, David
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (04): : 929 - 968
  • [26] The smallest singular value of a shifted d-regular random square matrix
    Alexander E. Litvak
    Anna Lytova
    Konstantin Tikhomirov
    Nicole Tomczak-Jaegermann
    Pierre Youssef
    Probability Theory and Related Fields, 2019, 173 : 1301 - 1347
  • [27] The smallest singular value of a shifted d-regular random square matrix
    Litvak, Alexander E.
    Lytova, Anna
    Tikhomirov, Konstantin
    Tomczak-Jaegermann, Nicole
    Youssef, Pierre
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 173 (3-4) : 1301 - 1347
  • [28] The acyclic edge chromatic number of a random d-regular graph is d+1
    Nesetril, J
    Wormald, NC
    JOURNAL OF GRAPH THEORY, 2005, 49 (01) : 69 - 74
  • [29] The computational hardness of counting in two-spin models on d-regular graphs
    Sly, Allan
    Sun, Nike
    2012 IEEE 53RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2012, : 361 - 369
  • [30] Hilbert functions of d-regular ideals
    Murai, Satoshi
    JOURNAL OF ALGEBRA, 2007, 317 (02) : 658 - 690