Cleaning Random d-Regular Graphs with Brooms

被引:0
|
作者
Paweł Prałat
机构
[1] West Virginia University,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Cleaning with brushes; Cleaning with Brooms; Random ; -regular graphs; Differential equations method; Graph searching;
D O I
暂无
中图分类号
学科分类号
摘要
A model for cleaning a graph with brushes was recently introduced. Let α = (v1, v2, . . . , vn) be a permutation of the vertices of G; for each vertex vi let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N^-(v_i)=\{j: v_j v_i \in E {\rm and} j<\,i\}}$$\end{document} ; finally let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_{\alpha}(G)=\sum_{i=1}^n {\rm max}\{|N^+(v_i)|-|N^-(v_i)|,0\}}$$\end{document}. The Broom number is given by B(G) =  maxαbα(G). We consider the Broom number of d-regular graphs, focusing on the asymptotic number for random d-regular graphs. Various lower and upper bounds are proposed. To get an asymptotically almost sure lower bound we use a degree-greedy algorithm to clean a random d-regular graph on n vertices (with dn even) and analyze it using the differential equations method (for fixed d). We further show that for any d-regular graph on n vertices there is a cleaning sequence such at least n(d + 1)/4 brushes are needed to clean a graph using this sequence. For an asymptotically almost sure upper bound, the pairing model is used to show that at most \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n(d+2\sqrt{d \ln 2})/4}$$\end{document} brushes can be used when a random d-regular graph is cleaned. This implies that for fixed large d, the Broom number of a random d-regular graph on n vertices is asymptotically almost surely \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{n}{4}(d+\Theta(\sqrt{d}))}$$\end{document}.
引用
收藏
页码:567 / 584
页数:17
相关论文
共 50 条
  • [1] Cleaning Random d-Regular Graphs with Brooms
    Pralat, Pawel
    GRAPHS AND COMBINATORICS, 2011, 27 (04) : 567 - 584
  • [2] On the chromatic number of random d-regular graphs
    Kemkes, Graeme
    Perez-Gimenez, Xavier
    Wormald, Nicholas
    ADVANCES IN MATHEMATICS, 2010, 223 (01) : 300 - 328
  • [3] Cleaning random d-regular graphs with brushes using a degree-greedy algorithm
    Messinger, Margaret-Ellen
    Pralat, Pawel
    Nowakowski, Richard J.
    Wormald, Nicholas
    COMBINATORIAL AND ALGORITHMIC ASPECTS OF NETWORKING, 2007, 4852 : 13 - +
  • [4] Spectrum of random d-regular graphs up to the edge
    Huang, Jiaoyang
    Yau, Horng-Tzer
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (03) : 1635 - 1723
  • [5] INVERTIBILITY OF ADJACENCY MATRICES FOR RANDOM d-REGULAR GRAPHS
    Huang, Jiaoyang
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (18) : 3977 - 4032
  • [6] Bounds on the bisection width for random d-regular graphs
    Diaz, J.
    Serna, M. J.
    Wormald, N. C.
    THEORETICAL COMPUTER SCIENCE, 2007, 382 (02) : 120 - 130
  • [7] On minimum vertex bisection of random d-regular graphs
    Diaz, Josep
    Diner, Oznur Yasar
    Serna, Maria
    Serra, Oriol
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2024, 144
  • [8] Computation of the bisection width for random d-regular graphs
    Díaz, J
    Serna, MJ
    Wormald, NC
    LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 : 49 - 58
  • [9] A NOTE ON THE SINGULARITY PROBABILITY OF RANDOM DIRECTED d-REGULAR GRAPHS
    Nguyen, Hoi H.
    Pan, Amanda
    arXiv, 2023,
  • [10] 3-star factors in random d-regular graphs
    Assiyatun, Hilda
    Wormald, Nicholas
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (08) : 1249 - 1262