Detection of Image Tampering Using Deep Learning, Error Levels and Noise Residuals

被引:0
|
作者
Sunen Chakraborty
Kingshuk Chatterjee
Paramita Dey
机构
[1] Haldia Institute of Technology,Department of Computer Science and Engineering
[2] Government College of Engineering and Ceramic Technology,Department of Computer Science and Engineering
[3] Government College of Engineering and Ceramic Technology,Department of Information Technology
来源
关键词
Image tampering; Error level analysis; Spatial rich model; Deep learning; Convolutional neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
Images once were considered a reliable source of information. However, when photo-editing software started to get noticed it gave rise to illegal activities which is called image tampering. These days we can come across innumerable tampered images across the internet. Software such as Photoshop, GNU Image Manipulation Program, etc. are applied to form tampered images from real ones in just a few minutes. To discover hidden signs of tampering in an image deep learning models are an effective tool than any other methods. Models used in deep learning are capable of extracting intricate features from an image automatically. Here we proposed a combination of traditional handcrafted features along with a deep learning model to differentiate between authentic and tampered images. We have presented a dual-branch Convolutional Neural Network in conjunction with Error Level Analysis and noise residuals from Spatial Rich Model. For our experiment, we utilized the freely accessible CASIA dataset. After training the dual-branch network for 16 epochs, it generated an accuracy of 98.55%. We have also provided a comparative analysis with other previously proposed work in the field of image forgery detection. This hybrid approach proves that deep learning models along with some well-known traditional approaches can provide better results for detecting tampered images.
引用
收藏
相关论文
共 50 条
  • [31] Intrusion Traffic Detection and Characterization using Deep Image Learning
    Kaur, Gurdip
    Lashkari, Arash Habibi
    Rahali, Abir
    2020 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2020, : 55 - 62
  • [32] Anomaly Detection using Deep Learning based Image Completion
    Haselmann, M.
    Gruber, D. P.
    Tabatabai, P.
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 1237 - 1242
  • [33] Image steganography using deep learning based edge detection
    Ray, Biswarup
    Mukhopadhyay, Souradeep
    Hossain, Sabbir
    Ghosal, Sudipta Kr
    Sarkar, Ram
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (24) : 33475 - 33503
  • [34] Facial Mask Detection Using Image Processing with Deep Learning
    Ding, Hongyu
    Latif, Muhammad Ahsan
    Zia, Zain
    Habib, Muhammad Asif
    Qayum, Muhammad Abdul
    Jiang, Quancai
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [35] Image Forgery Detection Using Deep Learning by Recompressing Images
    Ali, Syed Sadaf
    Ganapathi, Iyyakutti Iyappan
    Ngoc-Son Vu
    Ali, Syed Danish
    Saxena, Neetesh
    Werghi, Naoufel
    ELECTRONICS, 2022, 11 (03)
  • [36] Retinal Lesion Detection With Deep Learning Using Image Patches
    Lam, Carson
    Yu, Caroline
    Huang, Laura
    Rubin, Daniel
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (01) : 590 - 596
  • [37] Image-based ship detection using deep learning
    Lee, Sung-Jun
    Roh, Myung-Il
    Oh, Min-Jae
    OCEAN SYSTEMS ENGINEERING-AN INTERNATIONAL JOURNAL, 2020, 10 (04): : 415 - 434
  • [38] Detection of Image Steganography Using Deep Learning and Ensemble Classifiers
    Plachta, Mikolaj
    Krzemien, Marek
    Szczypiorski, Krzysztof
    Janicki, Artur
    ELECTRONICS, 2022, 11 (10)
  • [39] Insect Pest Image Detection and Classification using Deep Learning
    Kundur, Niranjan C.
    Mallikarjuna, P. B.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (09) : 411 - 421
  • [40] Image Target Detection and Recognition Method Using Deep Learning
    Sun H.
    Advances in Multimedia, 2022, 2022