Image Forgery Detection Using Deep Learning by Recompressing Images

被引:28
|
作者
Ali, Syed Sadaf [1 ]
Ganapathi, Iyyakutti Iyappan [2 ,3 ]
Ngoc-Son Vu [1 ]
Ali, Syed Danish [4 ]
Saxena, Neetesh [5 ]
Werghi, Naoufel [2 ,3 ]
机构
[1] CY Cergy Paris Univ, CNRS, ENSEA, ETIS,UMR 8051, F-95000 Cergy, France
[2] Khalifa Univ, C2PS, Abu Dhabi 127788, U Arab Emirates
[3] Khalifa Univ, KUCARS, Abu Dhabi 127788, U Arab Emirates
[4] Machine Intelligence Res MIR Labs Gwalior, Gwalior 474001, India
[5] Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF10 3AT, Wales
关键词
convolutional neural networks; neural networks; forgery detection; image compression; image processing;
D O I
10.3390/electronics11030403
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Capturing images has been increasingly popular in recent years, owing to the widespread availability of cameras. Images are essential in our daily lives because they contain a wealth of information, and it is often required to enhance images to obtain additional information. A variety of tools are available to improve image quality; nevertheless, they are also frequently used to falsify images, resulting in the spread of misinformation. This increases the severity and frequency of image forgeries, which is now a major source of concern. Numerous traditional techniques have been developed over time to detect image forgeries. In recent years, convolutional neural networks (CNNs) have received much attention, and CNN has also influenced the field of image forgery detection. However, most image forgery techniques based on CNN that exist in the literature are limited to detecting a specific type of forgery (either image splicing or copy-move). As a result, a technique capable of efficiently and accurately detecting the presence of unseen forgeries in an image is required. In this paper, we introduce a robust deep learning based system for identifying image forgeries in the context of double image compression. The difference between an image's original and recompressed versions is used to train our model. The proposed model is lightweight, and its performance demonstrates that it is faster than state-of-the-art approaches. The experiment results are encouraging, with an overall validation accuracy of 92.23%.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Image Forgery Detection Using Cryptography and Deep Learning
    Oke, Ayodeji
    Babaagba, Kehinde O.
    BIG DATA TECHNOLOGIES AND APPLICATIONS, EAI INTERNATIONAL CONFERENCE, BDTA 2023, 2024, 555 : 62 - 78
  • [2] Image Forgery Detection using Deep Learning: A Survey
    Barad, Zankhana J.
    Goswami, Mukesh M.
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 571 - 576
  • [3] Image Forgery Detection and Deep Learning Techniques: A Review
    Agarwal, Ritu
    Khudaniya, Deepak
    Gupta, Abhinav
    Grover, Khyati
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1096 - 1100
  • [4] A Tale of a Deep Learning Approach to Image Forgery Detection
    Majumder, Md. Taksir Hasan
    Al Islam, A. B. M. Alim
    PROCEEDINGS OF 2018 5TH INTERNATIONAL CONFERENCE ON NETWORKING, SYSTEMS AND SECURITY (NSYSS), 2018, : 102 - 110
  • [5] An Image Forgery Detection Technology Based on Deep Learning
    Zou, Yuqiang
    Liu, Junzhu
    Li, Yicong
    Xie, Yuxuan
    Liu, Bocheng
    Yi, Tingfeng
    Li, Xuan
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ALGORITHMS, SOFTWARE ENGINEERING, AND NETWORK SECURITY, ASENS 2024, 2024, : 353 - 359
  • [6] Image Region Forgery Detection: A Deep Learning Approach
    Zhang, Ying
    Goh, Jonathan
    Win, Lei Lei
    Thing, Vrizlynn
    PROCEEDINGS OF THE SINGAPORE CYBER-SECURITY CONFERENCE (SG-CRC) 2016: CYBER-SECURITY BY DESIGN, 2016, 14 : 1 - 11
  • [7] Image Forgery Detection Using Machine Learning
    Janokar, Sagar
    Kulkarni, Tejas
    Kulkarni, Yash
    Kulkarni, Varad
    Kullarkar, Harshal
    Kumare, Rahul
    Kumawat, Jay
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 5, SMARTCOM 2024, 2024, 949 : 169 - 181
  • [8] Deep learning for automated forgery detection in hyperspectral document images
    Khan, Muhammad Jaleed
    Yousaf, Adeel
    Abbas, Asad
    Khurshid, Khurram
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (05)
  • [9] A survey on deep learning-based image forgery detection
    Mehrjardi, Fatemeh Zare
    Latif, Ali Mohammad
    Zarchi, Mohsen Sardari
    Sheikhpour, Razieh
    PATTERN RECOGNITION, 2023, 144
  • [10] Deep learning-based image forgery detection system
    Suresh, Helina Rajini
    Shanmuganathan, M.
    Senthilkumar, T.
    Vidhyasagar, B. S.
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2024, 16 (02) : 160 - 172