Vortex line representation for flows of ideal and viscous fluids

被引:0
|
作者
E. A. Kuznetsov
机构
[1] Russian Academy of Sciences,Landau Institute for Theoretical Physics
关键词
47.15.Ki; 47.32.Cc;
D O I
暂无
中图分类号
学科分类号
摘要
The Euler hydrodynamics describing the vortex flows of ideal fluids is shown to coincide with the equations of motion obtained for a charged compressible fluid moving under the effect of a self-consistent electromagnetic field. For the Euler equations, the passage to the Lagrange description in the new hydrodynamics is equivalent to a combined Lagrange-Euler description, i.e., to the vortex line representation [5]. Owing to the compressibility of the new hydrodynamics, the collapse of a vortex flow of an ideal fluid can be interpreted as a result of the breaking of vortex lines. The Navier-Stokes equation formulated in terms of the vortex line representation proves to be reduced to a diffusion-type equation for the Cauchy invariant with the diffusion tensor determined by the metric of this representation.
引用
收藏
页码:346 / 350
页数:4
相关论文
共 50 条
  • [31] Optimization of steady flows for incompressible viscous fluids
    Málek, J
    Roubícek, T
    APPLIED NONLINEAR ANALYSIS, 1999, : 355 - 372
  • [32] Energy of eigenmodes in magnetohydrodynamic flows of ideal fluids
    Khalzov, I. V.
    Smolyakov, A. I.
    Ilgisonis, V. I.
    PHYSICS OF PLASMAS, 2008, 15 (05)
  • [33] On the generation and evolution of heated vortex rings in viscous fluids
    Advaith, S.
    Aswathi, K. T.
    Basu, Saptarshi
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2022, 91 : 107 - 120
  • [34] Vortex moment map for unsteady incompressible viscous flows
    Li, Juan
    Wang, Yinan
    Graham, Michael
    Zhao, Xiaowei
    JOURNAL OF FLUID MECHANICS, 2020, 891
  • [35] On steady rotational cyclonic flows: The viscous bidirectional vortex
    Majdalani, Joseph
    Chiaverini, Martin J.
    PHYSICS OF FLUIDS, 2009, 21 (10)
  • [36] Vortex Steady Planar Entropic Flows of Ideal Gases
    Khabirov S.V.
    Journal of Mathematical Sciences, 2019, 236 (6) : 679 - 686
  • [37] Geometrization of vortex and spiral flows in an ideal homogeneous fluid
    Kistovich, AV
    Chashechkin, YD
    REGULAR & CHAOTIC DYNAMICS, 2004, 9 (01): : 21 - 28
  • [38] ON THE VISCOUS MODES OF INSTABILITY OF A TRAILING LINE VORTEX
    KHORRAMI, MR
    JOURNAL OF FLUID MECHANICS, 1991, 225 : 197 - 212
  • [39] BIFURCATION PROBLEMS FOR CHANNEL-FLOWS OF VISCOUS FLUIDS
    KOSEL, U
    ROHLIG, KJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1992, 72 (06): : T428 - T436
  • [40] Generalized stochastic flows and applications to incompressible viscous fluids
    Antoniouk, Alexandra
    Arnaudon, Marc
    Cruzeiro, Ana Bela
    BULLETIN DES SCIENCES MATHEMATIQUES, 2014, 138 (04): : 565 - 584