Vortex line representation for flows of ideal and viscous fluids

被引:0
|
作者
E. A. Kuznetsov
机构
[1] Russian Academy of Sciences,Landau Institute for Theoretical Physics
关键词
47.15.Ki; 47.32.Cc;
D O I
暂无
中图分类号
学科分类号
摘要
The Euler hydrodynamics describing the vortex flows of ideal fluids is shown to coincide with the equations of motion obtained for a charged compressible fluid moving under the effect of a self-consistent electromagnetic field. For the Euler equations, the passage to the Lagrange description in the new hydrodynamics is equivalent to a combined Lagrange-Euler description, i.e., to the vortex line representation [5]. Owing to the compressibility of the new hydrodynamics, the collapse of a vortex flow of an ideal fluid can be interpreted as a result of the breaking of vortex lines. The Navier-Stokes equation formulated in terms of the vortex line representation proves to be reduced to a diffusion-type equation for the Cauchy invariant with the diffusion tensor determined by the metric of this representation.
引用
收藏
页码:346 / 350
页数:4
相关论文
共 50 条
  • [21] Mapping vortex diffusion in viscous and viscoelastic fluids
    Atakhorrami, M
    Koenderink, GH
    Schmidt, CF
    MacKintosh, FC
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 518A - 518A
  • [22] Understanding evolution of vortex rings in viscous fluids
    Tinaikar, Aashay
    Advaith, S.
    Basu, S.
    JOURNAL OF FLUID MECHANICS, 2018, 836 : 873 - 909
  • [23] SPIRAL FLOWS OF IDEAL AND VISCOUS-LIQUIDS
    SHMYGLEVSKII, YD
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1993, 33 (12) : 1665 - 1670
  • [24] Coadjoint orbits of vortex sheets in ideal fluids
    Gay-Balmaz, Francois
    Vizman, Cornelia
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 197
  • [25] TOPOLOGICAL VORTEX DYNAMICS IN AXISYMMETRICAL VISCOUS FLOWS
    MELANDER, MV
    HUSSAIN, F
    JOURNAL OF FLUID MECHANICS, 1994, 260 : 57 - 80
  • [26] APPLICATION OF RESULTS OF ANALYSIS OF TRANSIENT VORTEX FLOWS OF IDEAL FLUIDS TO DESCRIPTION OF THE TURBULENT MIXING LAYER.
    Taganov, G.I.
    Fluid mechanics. Soviet research, 1978, 7 (02): : 10 - 23
  • [27] Madelung transformation for vortex flows of ideal fluid
    Sorokin, A.L.
    Doklady Akademii Nauk, 2001, 379 (04) : 483 - 486
  • [28] Dynamics of Flexible Fibers in Viscous Flows and Fluids
    du Roure, Olivia
    Lindner, Anke
    Nazockdast, Ehssan N.
    Shelley, Michael J.
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 51, 2019, 51 : 539 - 572
  • [29] TWO PHASE FLOWS OF COMPRESSIBLE VISCOUS FLUIDS
    Feireisl, Eduard
    NOVOTNy, ANTONiN
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (08): : 2215 - 2232
  • [30] The dynamics of vortex rings: leapfrogging in an ideal and viscous fluid
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    Tenenev, Valentin A.
    FLUID DYNAMICS RESEARCH, 2014, 46 (03)