Study of the nodal feedback stabilization of a string-beams network

被引:21
|
作者
Ammari K. [1 ]
Mehrenberger M. [2 ]
机构
[1] Département de Mathématiques, Faculté des Sciences de Monastir
[2] Institut de Recherche Mathématique Avancée, Université de Strasbourg, 67084 Strasbourg
关键词
Feedback stabilization; Numerical stabilization; String-beams network;
D O I
10.1007/s12190-010-0412-9
中图分类号
学科分类号
摘要
We consider a stabilization problem for a string-beams network. We prove an exponential decay result. The method used is based on a frequency domain method and combine a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent. Moreover, we give a numerical illustration based on the methodology introduced in Ammari and Tucsnak (ESAIM Control Optim. Calc. Var. 6, 361-386, 2001) where the exponential stability for the closed loop problem is reduced to an observability estimate for the corresponding uncontrolled system combined to a boundedness property of the transfer function of the associated open loop system. © 2010 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:441 / 458
页数:17
相关论文
共 50 条
  • [41] Exponential stabilization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback
    Ramos, A. J. A.
    Ozer, A. O.
    Freitas, M. M.
    Almeida Junior, D. S.
    Martins, J. D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [42] Feedback stabilization over wireless network using adaptive coded modulation
    Yang L.
    Guan X.-P.
    Long C.-N.
    Luo X.-Y.
    International Journal of Automation and Computing, 2008, 5 (4) : 381 - 388
  • [43] Feedback Stabilization of MIMO Systems in the Presence of Stochastic Network Uncertainties and Delays
    Qi, Tian
    Chen, Jie
    Su, Weizhou
    Fu, Minyue
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 1605 - 1612
  • [44] A pinned network of Euler-Bernoulli beams under feedback controls
    Kuiting Zhang
    Genqi Xu
    Journal of Systems Science and Complexity, 2013, 26 : 313 - 334
  • [45] Stabilization of feedback linearizable systems using a radial basis function network
    Nam, K
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (05) : 1026 - 1031
  • [46] A pinned network of Euler-Bernoulli beams under feedback controls
    Zhang Kuiting
    Xu Genqi
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2013, 26 (03) : 313 - 334
  • [47] A PINNED NETWORK OF EULER-BERNOULLI BEAMS UNDER FEEDBACK CONTROLS
    ZHANG Kuiting
    XU Genqi
    JournalofSystemsScience&Complexity, 2013, 26 (03) : 313 - 334
  • [48] Stabilization for the Kirchhoff type equation from an axially moving heterogeneous string modeling with boundary feedback control
    Kim, Daewook
    Kim, Sangil
    Jung, Il Hyo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (08) : 3598 - 3617
  • [49] Stabilization of a String with Two Rigid Loads: Application of Optimal Feedback Gain Based on a Finite Difference Approximation
    Sano, Hideki
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2ND EDITION, 2008, : 175 - +
  • [50] Study on ZigBee Network Routing Based on Nodal Heterogeneity
    Dan, Liu
    Hong, Qianzhi
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS, 2009, : 607 - 609