Study of the nodal feedback stabilization of a string-beams network

被引:21
|
作者
Ammari K. [1 ]
Mehrenberger M. [2 ]
机构
[1] Département de Mathématiques, Faculté des Sciences de Monastir
[2] Institut de Recherche Mathématique Avancée, Université de Strasbourg, 67084 Strasbourg
关键词
Feedback stabilization; Numerical stabilization; String-beams network;
D O I
10.1007/s12190-010-0412-9
中图分类号
学科分类号
摘要
We consider a stabilization problem for a string-beams network. We prove an exponential decay result. The method used is based on a frequency domain method and combine a contradiction argument with the multiplier technique to carry out a special analysis for the resolvent. Moreover, we give a numerical illustration based on the methodology introduced in Ammari and Tucsnak (ESAIM Control Optim. Calc. Var. 6, 361-386, 2001) where the exponential stability for the closed loop problem is reduced to an observability estimate for the corresponding uncontrolled system combined to a boundedness property of the transfer function of the associated open loop system. © 2010 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:441 / 458
页数:17
相关论文
共 50 条
  • [21] Exponential stabilization of an axially moving string with geometrical nonlinearity by linear boundary feedback
    Li, Tiecheng
    Hou, Zhichao
    JOURNAL OF SOUND AND VIBRATION, 2006, 296 (4-5) : 861 - 870
  • [22] Stabilization analysis of a generalized nonlinear axially moving string by boundary velocity feedback
    Li, Tie-Cheng
    Hou, Zhi-Chao
    Li, Jun-Feng
    AUTOMATICA, 2008, 44 (02) : 498 - 503
  • [23] Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force
    Ammari, K
    Tucsnak, M
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (04) : 1160 - 1181
  • [24] Exponential stabilization of laminated beams with structural damping and boundary feedback controls
    Wang, JM
    Xu, GQ
    Yung, SP
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (05) : 1575 - 1597
  • [25] A study of moving string with partial state feedback
    Huang, JS
    Wu, JW
    Lu, PY
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2002, 44 (09) : 1893 - 1906
  • [26] Simplified adaptive neural network output feedback stabilization
    Chen, Wei-Sheng
    Li, Jun-Min
    Kongzhi yu Juece/Control and Decision, 2007, 22 (10): : 1086 - 1090
  • [27] Partial stabilization for Boolean network with state feedback control
    Li Fangfei
    Zhao Shouwei
    Li Chunxiang
    Yu Zhaoxu
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 1447 - 1450
  • [28] Existence Result and Exponential Stabilization of a Moving String with Time Dependent Delay in the Boundary Feedback
    Kelleche A.
    Abdallaoui A.
    Berkani A.
    Houasni M.
    International Journal of Applied and Computational Mathematics, 2024, 10 (3)
  • [29] LOW-FREQUENCY PLASMA STABILIZATION BY FEEDBACK-CONTROLLED NEUTRAL BEAMS
    CHEN, FF
    FURTH, HP
    NUCLEAR FUSION, 1969, 9 (04) : 364 - +
  • [30] Feedback stabilization of quantum cascade laser beams for stand-off applications
    Mueller, Reik
    Kendziora, Christopher A.
    Furstenberg, Robert
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS IX, 2017, 10194