Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes

被引:0
|
作者
Mohamed Jebbar
Bruno Franzetti
Eric Girard
Philippe Oger
机构
[1] Université de Bretagne Occidentale,
[2] UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E),undefined
[3] Institut Universitaire Européen de la Mer (IUEM),undefined
[4] CNRS,undefined
[5] UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E),undefined
[6] Institut Universitaire Européen de la Mer (IUEM),undefined
[7] Ifremer,undefined
[8] UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E),undefined
[9] Technopôle Brest-Iroise,undefined
[10] Centre National de la Recherche Scientifique,undefined
[11] IBS,undefined
[12] Université Grenoble Alpes,undefined
[13] Institut de Biologie Structurale (IBS),undefined
[14] Commissariat à l’Energie Atomique et aux Energies Alternatives,undefined
[15] Direction des Sciences du Vivant,undefined
[16] IBS,undefined
[17] CNRS,undefined
[18] UMR 5276,undefined
[19] Ecole Normale Supérieure de Lyon,undefined
[20] Laboratoire de Microbiologie des Environnements Extrêmes (UMR 6197),undefined
[21] Institut Universitaire Européen de la Mer (IUEM),undefined
[22] Technopole Brest-Iroise,undefined
来源
Extremophiles | 2015年 / 19卷
关键词
Deep biosphere; Diversity; High hydrostatic pressure; Enzymatic function; Molecular adaptation;
D O I
暂无
中图分类号
学科分类号
摘要
Prokaryotes inhabiting in the deep sea vent ecosystem will thus experience harsh conditions of temperature, pH, salinity or high hydrostatic pressure (HHP) stress. Among the fifty-two piezophilic and piezotolerant prokaryotes isolated so far from different deep-sea environments, only fifteen (four Bacteria and eleven Archaea) that are true hyper/thermophiles and piezophiles have been isolated from deep-sea hydrothermal vents; these belong mainly to the Thermococcales order. Different strategies are used by microorganisms to thrive in deep-sea hydrothermal vents in which “extreme” physico-chemical conditions prevail and where non-adapted organisms cannot live, or even survive. HHP is known to impact the structure of several cellular components and functions, such as membrane fluidity, protein activity and structure. Physically the impact of pressure resembles a lowering of temperature, since it reinforces the structure of certain molecules, such as membrane lipids, and an increase in temperature, since it will also destabilize other structures, such as proteins. However, universal molecular signatures of HHP adaptation are not yet known and are still to be deciphered.
引用
收藏
页码:721 / 740
页数:19
相关论文
共 50 条
  • [41] Search for photosynthesis at deep-sea hydrothermal vents.
    Blankenship, RE
    van Dover, CL
    Plumley, FG
    Falkowski, PG
    Beatty, JT
    Yurkov, VV
    Kolber, ZS
    Lince, MC
    Raymond, JR
    Lang, AS
    Rathgeber, C
    Sczekan, SR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U544 - U544
  • [42] ASPECTS OF LIFE DEVELOPMENT AT DEEP-SEA HYDROTHERMAL VENTS
    GAILL, F
    FASEB JOURNAL, 1993, 7 (06): : 558 - 565
  • [43] Predation structures communities at deep-sea hydrothermal vents
    Micheli, F
    Peterson, CH
    Mullineaux, LS
    Fisher, CR
    Mills, SW
    Sancho, G
    Johnson, GA
    Lenihan, HS
    ECOLOGICAL MONOGRAPHS, 2002, 72 (03) : 365 - 382
  • [44] Experimental ecology at deep-sea hydrothermal vents: a perspective
    Van Dover, CL
    Lutz, RA
    JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 2004, 300 (1-2) : 273 - 307
  • [45] Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents
    Rika E. Anderson
    Julie Reveillaud
    Emily Reddington
    Tom O. Delmont
    A. Murat Eren
    Jill M. McDermott
    Jeff S. Seewald
    Julie A. Huber
    Nature Communications, 8
  • [46] DEEP-SEA PRIMARY PRODUCTION AT THE GALAPAGOS HYDROTHERMAL VENTS
    KARL, DM
    WIRSEN, CO
    JANNASCH, HW
    SCIENCE, 1980, 207 (4437) : 1345 - 1347
  • [47] Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents
    Hu, Sarah K.
    Herrera, Erica L.
    Smith, Amy R.
    Pachiadaki, Maria G.
    Edgcomb, Virginia P.
    Sylva, Sean P.
    Chan, Eric W.
    Seewald, Jeffrey S.
    German, Christopher R.
    Huber, Julie A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (29)
  • [48] Antarctic Marine Biodiversity and Deep-Sea Hydrothermal Vents
    Chown, Steven L.
    PLOS BIOLOGY, 2012, 10 (01)
  • [49] Recent advances in imaging deep-sea hydrothermal vents
    Lutz, R
    Shank, T
    Rona, P
    Reed, A
    Allen, C
    Lange, W
    Low, S
    Kristof, E
    CAHIERS DE BIOLOGIE MARINE, 2002, 43 (3-4): : 267 - 269
  • [50] A review of predators and predation at deep-sea hydrothermal vents
    Voight, JR
    CAHIERS DE BIOLOGIE MARINE, 2000, 41 (02): : 155 - 166