Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes

被引:0
|
作者
Mohamed Jebbar
Bruno Franzetti
Eric Girard
Philippe Oger
机构
[1] Université de Bretagne Occidentale,
[2] UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E),undefined
[3] Institut Universitaire Européen de la Mer (IUEM),undefined
[4] CNRS,undefined
[5] UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E),undefined
[6] Institut Universitaire Européen de la Mer (IUEM),undefined
[7] Ifremer,undefined
[8] UMR 6197-Laboratoire de Microbiologie des Environnements Extrêmes (LM2E),undefined
[9] Technopôle Brest-Iroise,undefined
[10] Centre National de la Recherche Scientifique,undefined
[11] IBS,undefined
[12] Université Grenoble Alpes,undefined
[13] Institut de Biologie Structurale (IBS),undefined
[14] Commissariat à l’Energie Atomique et aux Energies Alternatives,undefined
[15] Direction des Sciences du Vivant,undefined
[16] IBS,undefined
[17] CNRS,undefined
[18] UMR 5276,undefined
[19] Ecole Normale Supérieure de Lyon,undefined
[20] Laboratoire de Microbiologie des Environnements Extrêmes (UMR 6197),undefined
[21] Institut Universitaire Européen de la Mer (IUEM),undefined
[22] Technopole Brest-Iroise,undefined
来源
Extremophiles | 2015年 / 19卷
关键词
Deep biosphere; Diversity; High hydrostatic pressure; Enzymatic function; Molecular adaptation;
D O I
暂无
中图分类号
学科分类号
摘要
Prokaryotes inhabiting in the deep sea vent ecosystem will thus experience harsh conditions of temperature, pH, salinity or high hydrostatic pressure (HHP) stress. Among the fifty-two piezophilic and piezotolerant prokaryotes isolated so far from different deep-sea environments, only fifteen (four Bacteria and eleven Archaea) that are true hyper/thermophiles and piezophiles have been isolated from deep-sea hydrothermal vents; these belong mainly to the Thermococcales order. Different strategies are used by microorganisms to thrive in deep-sea hydrothermal vents in which “extreme” physico-chemical conditions prevail and where non-adapted organisms cannot live, or even survive. HHP is known to impact the structure of several cellular components and functions, such as membrane fluidity, protein activity and structure. Physically the impact of pressure resembles a lowering of temperature, since it reinforces the structure of certain molecules, such as membrane lipids, and an increase in temperature, since it will also destabilize other structures, such as proteins. However, universal molecular signatures of HHP adaptation are not yet known and are still to be deciphered.
引用
收藏
页码:721 / 740
页数:19
相关论文
共 50 条
  • [31] Adaptation of chemosynthetic microorganisms to elevated mercury concentrations in deep-sea hydrothermal vents
    Crespo-Medina, Melitza
    Chatziefthimiou, Aspassia D.
    Bloom, Nicolas S.
    Luther, George W., III
    Wright, Derek D.
    Reinfelder, John R.
    Vetriani, Costantino
    Barkay, Tamar
    LIMNOLOGY AND OCEANOGRAPHY, 2009, 54 (01) : 41 - 49
  • [32] Sulfur oxidation at deep-sea hydrothermal vents
    Sievert, Stefan M.
    Hugler, Michael
    Taylor, Craig D.
    Wirsen, Carl O.
    MICROBIAL SULFUR METABOLISM, 2008, : 238 - +
  • [33] Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents
    Anderson, Rika E.
    Sogin, Mitchell L.
    Baross, John A.
    FEMS MICROBIOLOGY ECOLOGY, 2015, 91 (01) : 1 - 11
  • [34] Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents
    Burgaud, Gaetan
    Le Calvez, Thomas
    Arzur, Danielle
    Vandenkoornhuyse, Philippe
    Barbier, Georges
    ENVIRONMENTAL MICROBIOLOGY, 2009, 11 (06) : 1588 - 1600
  • [35] Globally-distributed microbial eukaryotes exhibit endemism at deep-sea hydrothermal vents
    Hu, Sarah K.
    Smith, Amy R.
    Anderson, Rika E.
    Sylva, Sean P.
    Setzer, Michaela
    Steadmon, Maria
    Frank, Kiana L.
    Chan, Eric W.
    Lim, Darlene S. S.
    German, Christopher R.
    Breier, John A.
    Lang, Susan Q.
    Butterfield, David A.
    Fortunato, Caroline S.
    Seewald, Jeffrey S.
    Huber, Julie A.
    MOLECULAR ECOLOGY, 2023, 32 (23) : 6580 - 6598
  • [36] Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents
    Li, Meng
    Toner, Brandy M.
    Baker, Brett J.
    Breier, John A.
    Sheik, Cody S.
    Dick, Gregory J.
    NATURE COMMUNICATIONS, 2014, 5
  • [37] LARVAL ECOLOGY OF MOLLUSKS AT DEEP-SEA HYDROTHERMAL VENTS
    LUTZ, RA
    BOUCHET, P
    JABLONSKI, D
    TURNER, RD
    WAREN, A
    AMERICAN MALACOLOGICAL BULLETIN, 1986, 4 (01) : 49 - 54
  • [38] MICROORGANISMS AS FOOD RESOURCES AT DEEP-SEA HYDROTHERMAL VENTS
    VANDOVER, CL
    FRY, B
    LIMNOLOGY AND OCEANOGRAPHY, 1994, 39 (01) : 51 - 57
  • [39] Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents
    Anderson, Rika E.
    Reveillaud, Julie
    Reddington, Emily
    Delmont, Tom O.
    Eren, A. Murat
    McDermott, Jill M.
    Seewald, Jeff S.
    Huber, Julie A.
    NATURE COMMUNICATIONS, 2017, 8
  • [40] Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents
    Meng Li
    Brandy M. Toner
    Brett J. Baker
    John A. Breier
    Cody S. Sheik
    Gregory J. Dick
    Nature Communications, 5