Glutathione S-transferase P1 gene polymorphisms and susceptibility to coronary artery disease in a subgroup of north Indian population

被引:0
|
作者
M. A. Bhat
G. Gandhi
机构
[1] Guru Nanak Dev University,Department of Human Genetics
来源
Journal of Genetics | 2017年 / 96卷
关键词
glutathione ; -transferase; gene; single-nucleotide polymorphisms; coronary artery disease;
D O I
暂无
中图分类号
学科分类号
摘要
The present study aimed to investigate the association of g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} and g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} polymorphisms of GSTP1 with coronary artery disease (CAD) in a subgroup of north Indian population. In the present case–control study, CAD patients (n=200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 200$$\end{document}) and age-matched, sex-matched and ethnicity-matched healthy controls (n=200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 200$$\end{document}) were genotyped for polymorphisms in GSTP1 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Genotype distribution of g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} and g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} polymorphisms of GSTP1 gene was significantly different between cases and controls (P=0.005\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.005$$\end{document} and 0.024, respectively). Binary logistic regression analysis showed significant association of A/G (odds ratio (OR): 1.6, 95% CI: 1.08–2.49, P=0.020\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.020$$\end{document}) and G/G (OR: 3.1, 95% CI: 1.41–6.71, P=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=$$\end{document} 0.005) genotypes of GSTP1 g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{\!>\!}\hbox {G}$$\end{document}, and C/T (OR: 5.8, 95% CI: 1.26–26.34, P=0.024\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.024$$\end{document}) genotype of GSTP1 g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} with CAD. The A/G and G/G genotypes of g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} and C/T genotype of g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} conferred 6.5-fold increased risk for CAD (OR: 6.5, 95% CI: 1.37–31.27, P=0.018\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.018$$\end{document}). Moreover, the recessive model of GSTP1 g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} is the best fit inheritance model to predict the susceptible gene effect (OR: 2.3, 95% CI: 1.11–4.92, P=0.020\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.020$$\end{document}). In conclusion, statistically significant associations of GSTP1 g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} (A/G, G/G) and g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} (C/T) genotypes with CAD were observed.
引用
收藏
页码:927 / 932
页数:5
相关论文
共 50 条
  • [41] Glutathione S-transferase Gene Variants and Risk of Benign Prostate Hyperplasia in a North Indian Population
    Konwar, Rituraj
    Manchanda, Parmeet Kaur
    Chaudhary, Preeti
    Nayak, V. Lakshma
    Singh, Vishwajeet
    Bid, Hemant Kumar
    ASIAN PACIFIC JOURNAL OF CANCER PREVENTION, 2010, 11 (02) : 365 - 370
  • [42] Human glutathione S-transferase P1 polymorphisms:: relationship to lung tissue enzyme activity and population frequency distribution
    Watson, MA
    Stewart, RK
    Smith, GBJ
    Massey, TE
    Bell, DA
    CARCINOGENESIS, 1998, 19 (02) : 275 - 280
  • [43] Glutathione S-transferase P1 and DNA Polymorphisms with the Response to Chemotherapy and the Prognosis of Bone Tumor
    Yang, Li-Min
    Li, Xiu-Hua
    Bao, Cui-Fen
    ASIAN PACIFIC JOURNAL OF CANCER PREVENTION, 2012, 13 (11) : 5883 - 5886
  • [44] Glutathione S-transferase P1 polymorphism affected plasma malondialdehyde-modified LDL levels in patients with coronary artery disease
    Watanabe, H
    Ueno, T
    Matsumoto, T
    Takahashi, Y
    Tsunemi, A
    Yahara, N
    Fujioka, T
    Saito, S
    Matsumoto, K
    Kanmatsuse, K
    ATHEROSCLEROSIS SUPPLEMENTS, 2003, 4 (02) : 293 - 293
  • [45] Glutathione S-transferase gene polymorphisms in presbycusis
    Aras-Ates, N
    Ünal, M
    Tamer, L
    Derici, E
    Karakas, S
    Ercan, T
    Pata, YS
    Akbas, Y
    Vayisoglu, T
    Çamdeviren, H
    OTOLOGY & NEUROTOLOGY, 2005, 26 (03) : 392 - 397
  • [46] Pharmacogenetics of the human glutathione S-transferase P1 gene and tumor response to chemotherapy
    Ishimoto, T
    Ali-Osman, F
    EUROPEAN JOURNAL OF CANCER, 2002, 38 : S157 - S158
  • [47] Genetic polymorphism of glutathione S-transferase P1 gene and lung cancer risk
    Jordi To-Figueras
    Manel Gené
    Jesús Gómez-catalán
    Esther Piqué
    Natividad Borrego
    Josep Lluís Carrasco
    Josep Ramón
    Jacint Corbella
    Cancer Causes & Control, 1999, 10 : 65 - 70
  • [48] Epigenetic silencing of glutathione S-transferase P1 gene expression in human leukemia
    Schnekenburger, Michael
    Karius, Tommy
    Walter, Joern
    Dicato, Mario
    Diederich, Marc
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2010, 26 : S12 - S12
  • [49] Genetic polymorphism of glutathione S-transferase P1 gene and lung cancer risk
    To-Figueras, J
    Gené, M
    Gómez-Catalán, J
    Piqué, E
    Borrego, N
    Carrasco, JL
    Ramón, J
    Corbella, J
    CANCER CAUSES & CONTROL, 1999, 10 (01) : 65 - 70
  • [50] Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia
    Esteller, M
    Corn, PG
    Urena, JM
    Gabrielson, E
    Baylin, SB
    Herman, JG
    CANCER RESEARCH, 1998, 58 (20) : 4515 - 4518