Glutathione S-transferase P1 gene polymorphisms and susceptibility to coronary artery disease in a subgroup of north Indian population

被引:0
|
作者
M. A. Bhat
G. Gandhi
机构
[1] Guru Nanak Dev University,Department of Human Genetics
来源
Journal of Genetics | 2017年 / 96卷
关键词
glutathione ; -transferase; gene; single-nucleotide polymorphisms; coronary artery disease;
D O I
暂无
中图分类号
学科分类号
摘要
The present study aimed to investigate the association of g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} and g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} polymorphisms of GSTP1 with coronary artery disease (CAD) in a subgroup of north Indian population. In the present case–control study, CAD patients (n=200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 200$$\end{document}) and age-matched, sex-matched and ethnicity-matched healthy controls (n=200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 200$$\end{document}) were genotyped for polymorphisms in GSTP1 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Genotype distribution of g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} and g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} polymorphisms of GSTP1 gene was significantly different between cases and controls (P=0.005\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.005$$\end{document} and 0.024, respectively). Binary logistic regression analysis showed significant association of A/G (odds ratio (OR): 1.6, 95% CI: 1.08–2.49, P=0.020\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.020$$\end{document}) and G/G (OR: 3.1, 95% CI: 1.41–6.71, P=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=$$\end{document} 0.005) genotypes of GSTP1 g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{\!>\!}\hbox {G}$$\end{document}, and C/T (OR: 5.8, 95% CI: 1.26–26.34, P=0.024\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.024$$\end{document}) genotype of GSTP1 g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} with CAD. The A/G and G/G genotypes of g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} and C/T genotype of g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} conferred 6.5-fold increased risk for CAD (OR: 6.5, 95% CI: 1.37–31.27, P=0.018\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.018$$\end{document}). Moreover, the recessive model of GSTP1 g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} is the best fit inheritance model to predict the susceptible gene effect (OR: 2.3, 95% CI: 1.11–4.92, P=0.020\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.020$$\end{document}). In conclusion, statistically significant associations of GSTP1 g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} (A/G, G/G) and g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} (C/T) genotypes with CAD were observed.
引用
收藏
页码:927 / 932
页数:5
相关论文
共 50 条
  • [31] Polymorphisms of glutathione S-transferase Mu 1, glutathione S-transferase theta 1 and glutathione S-transferase Pi 1 genes in Hodgkin's lymphoma susceptibility and progression
    Lourenco, Gustavo J.
    Neri, Iramaia A.
    Sforni, Vitor C. S.
    Kameo, Rodolfo
    Lorand-Metze, Irene
    Lima, Carmen S. P.
    LEUKEMIA & LYMPHOMA, 2009, 50 (06) : 1005 - 1009
  • [32] l Role of glutathione S-transferase M1, T1 and P1 gene polymorphisms in childhood acute lymphoblastic leukemia susceptibility in a Turkish population
    Guven, Mehmet
    Unal, Selin
    Erhan, Duygu
    Ozdemir, Nihal
    Baris, Safa
    Celkan, Tiraje
    Bostanci, Merve
    Batar, Bahadir
    META GENE, 2015, 5 : 115 - 119
  • [33] Glutathione S-transferase gene polymorphisms and susceptibility to chronic myeloid leukemia
    He, Hai-rong
    Zhang, Xiao-xia
    Sun, Jin-yue
    Hu, Sa-sa
    Ma, Ying
    Dong, Ya-lin
    Lu, Jun
    TUMOR BIOLOGY, 2014, 35 (06) : 6119 - 6125
  • [34] A meta-analysis of the association of glutathione S-transferase P1 gene polymorphism with the susceptibility of breast cancer
    Liu, Jun-Jie
    Liu, Jin-Lu
    Zhang, Xing
    Xie, Lu
    Zeng, Jian
    MOLECULAR BIOLOGY REPORTS, 2013, 40 (04) : 3203 - 3212
  • [35] A meta-analysis of the association of glutathione S-transferase P1 gene polymorphism with the susceptibility of breast cancer
    Jun-Jie Liu
    Jin-Lu Liu
    Xing Zhang
    Lu Xie
    Jian Zeng
    Molecular Biology Reports, 2013, 40 : 3203 - 3212
  • [36] Polymorphism within the glutathione S-transferase P1 gene is associated with increased susceptibility to childhood malignant diseases
    Zielinska, E
    Zubowska, M
    Bodalski, J
    PEDIATRIC BLOOD & CANCER, 2004, 43 (05) : 552 - 559
  • [37] Human glutathione S-transferase A1, T1, M1, and P1 polymorphisms and susceptibility to prostate cancer in the Japanese population
    Komiya, Y
    Tsukino, H
    Nakao, H
    Kuroda, Y
    Imai, H
    Katoh, T
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2005, 131 (04) : 238 - 242
  • [38] Polymorphic expression of the glutathione S-transferase P1 gene and its susceptibility to Barrett's esophagus and esophageal carcinoma
    van Lieshout, EMM
    Roelofs, HMJ
    Dekker, S
    Mulder, CJJ
    Wobbes, T
    Jansen, JBMJ
    Peters, WHM
    CANCER RESEARCH, 1999, 59 (03) : 586 - 589
  • [39] Human glutathione S-transferase A1, T1, M1, and P1 polymorphisms and susceptibility to prostate cancer in the Japanese population
    Yasuhiro Komiya
    Hiromasa Tsukino
    Hiroyuki Nakao
    Yoshiki Kuroda
    Hirohisa Imai
    Takahiko Katoh
    Journal of Cancer Research and Clinical Oncology, 2005, 131 : 238 - 242
  • [40] Glutathione-S-transferase P1 gene polymorphism and susceptibility to endometriosis
    Ertunc, D
    Aban, M
    Tok, EC
    Tamer, L
    Arslan, M
    Dilek, S
    HUMAN REPRODUCTION, 2005, 20 (08) : 2157 - 2161