Glutathione S-transferase P1 gene polymorphisms and susceptibility to coronary artery disease in a subgroup of north Indian population

被引:0
|
作者
M. A. Bhat
G. Gandhi
机构
[1] Guru Nanak Dev University,Department of Human Genetics
来源
Journal of Genetics | 2017年 / 96卷
关键词
glutathione ; -transferase; gene; single-nucleotide polymorphisms; coronary artery disease;
D O I
暂无
中图分类号
学科分类号
摘要
The present study aimed to investigate the association of g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} and g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} polymorphisms of GSTP1 with coronary artery disease (CAD) in a subgroup of north Indian population. In the present case–control study, CAD patients (n=200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 200$$\end{document}) and age-matched, sex-matched and ethnicity-matched healthy controls (n=200\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 200$$\end{document}) were genotyped for polymorphisms in GSTP1 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Genotype distribution of g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} and g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} polymorphisms of GSTP1 gene was significantly different between cases and controls (P=0.005\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.005$$\end{document} and 0.024, respectively). Binary logistic regression analysis showed significant association of A/G (odds ratio (OR): 1.6, 95% CI: 1.08–2.49, P=0.020\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.020$$\end{document}) and G/G (OR: 3.1, 95% CI: 1.41–6.71, P=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=$$\end{document} 0.005) genotypes of GSTP1 g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{\!>\!}\hbox {G}$$\end{document}, and C/T (OR: 5.8, 95% CI: 1.26–26.34, P=0.024\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.024$$\end{document}) genotype of GSTP1 g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} with CAD. The A/G and G/G genotypes of g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} and C/T genotype of g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} conferred 6.5-fold increased risk for CAD (OR: 6.5, 95% CI: 1.37–31.27, P=0.018\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.018$$\end{document}). Moreover, the recessive model of GSTP1 g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} is the best fit inheritance model to predict the susceptible gene effect (OR: 2.3, 95% CI: 1.11–4.92, P=0.020\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P = 0.020$$\end{document}). In conclusion, statistically significant associations of GSTP1 g.313A>G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.313\hbox {A}{>}\hbox {G}$$\end{document} (A/G, G/G) and g.341C>T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {g}.341\hbox {C}{>}\hbox {T}$$\end{document} (C/T) genotypes with CAD were observed.
引用
收藏
页码:927 / 932
页数:5
相关论文
共 50 条
  • [1] Glutathione S-transferase P1 gene polymorphisms and susceptibility to coronary artery disease in a subgroup of north Indian population
    Bhat, M. A.
    Gandhi, G.
    JOURNAL OF GENETICS, 2017, 96 (06) : 927 - 932
  • [2] Polymorphisms of the glutathione S-transferase P1 gene and head and neck cancer susceptibility
    Ophuis, MBO
    Roelofs, HMJ
    van den Brandt, PA
    Peters, WHM
    Mann, JJ
    HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2003, 25 (01): : 37 - 43
  • [3] Genetic Polymorphisms of Glutathione S-Transferase P1 and Bladder Cancer Susceptibility in a Chinese Population
    Zhang, RongGui
    Xu, GuangYong
    Chen, WenJun
    Zhang, WeiLi
    GENETIC TESTING AND MOLECULAR BIOMARKERS, 2011, 15 (1-2) : 85 - 88
  • [4] Screening for polymorphisms in exon 5 of the glutathione S-transferase P1 gene
    Rodriguez-Frias, F
    Gonzalez, C
    Costa, X
    Campos, F
    Cotrina, M
    Jardi, R
    Miravitlles, M
    Vidal, R
    THORAX, 2000, 55 (06) : 535 - 536
  • [5] Association of glutathione S-transferase (GSTM1, T1 and P1) gene polymorphisms with type 2 diabetes mellitus in north Indian population
    Bid, H. K.
    Konwar, R.
    Saxena, M.
    Chaudhari, P.
    Agrawal, C. G.
    Banerjee, M.
    JOURNAL OF POSTGRADUATE MEDICINE, 2010, 56 (03) : 176 - 181
  • [6] Glutathione S-transferase P1 genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukaemia
    Krajinovic, M
    Labuda, D
    Sinnett, D
    PHARMACOGENETICS, 2002, 12 (08): : 655 - 658
  • [7] Association of glutathione S-transferase P1 gene polymorphism with the susceptibility of lung cancer
    Feng, Xu
    Zheng, Bao-Shi
    Shi, Jun-Jie
    Qian, Jun
    He, Wei
    Zhou, Hua-Fu
    MOLECULAR BIOLOGY REPORTS, 2012, 39 (12) : 10313 - 10323
  • [8] Association of glutathione S-transferase P1 gene polymorphism with the susceptibility of lung cancer
    Xu Feng
    Bao-Shi Zheng
    Jun-Jie Shi
    Jun Qian
    Wei He
    Hua-Fu Zhou
    Molecular Biology Reports, 2012, 39 : 10313 - 10323
  • [9] Studies of glutathione S-transferase P1 gene.
    Liu, DY
    Fang, F
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 1996, 23 (01) : 42 - 45
  • [10] Glutathione S-transferase gene polymorphisms are a susceptibility factor to Graves disease
    Ward, LS
    Morari, J
    Cury, AN
    Monte, O
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONGRESS OF ENDOCRINOLOGY, 2004, : 477 - 480