On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms

被引:0
|
作者
B.-Y. Chen
机构
[1] Department of Mathematics,
[2] Michigan State University,undefined
[3] East Lansing,undefined
[4] MI 48824-1027,undefined
[5] U.S.A.,undefined
来源
Archiv der Mathematik | 2000年 / 74卷
关键词
Complex Space; Fundamental Form; Space Form; Ricci Curvature; Ricci Tensor;
D O I
暂无
中图分类号
学科分类号
摘要
Let M n be a Riemannian n-manifold. Denote by S(p) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\overline {Ric}(p)$\end{document} the Ricci tensor and the maximum Ricci curvature on M n at a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $p\in M^n$\end{document}, respectively. First we show that every isotropic submanifold of a complex space form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\widetilde M^m(4\,c)$\end{document} satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $S\leq ((n-1)c+ {n^2 \over 4} H^2)g$\end{document}, where H2 and g are the squared mean curvature function and the metric tensor on M n, respectively. The equality case of the above inequality holds identically if and only if either M n is totally geodesic submanifold or n = 2 and M n is a totally umbilical submanifold. Then we prove that if a Lagrangian submanifold of a complex space form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\widetilde M^m(4\,c)$\end{document} satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\overline {Ric}= (n-1)c+ {n^2 \over 4} H^2$\end{document} identically, then it is a minimal submanifold. Finally, we describe the geometry of Lagrangian submanifolds which satisfy the equality under the condition that the dimension of the kernel of second fundamental form is constant.
引用
收藏
页码:154 / 160
页数:6
相关论文
共 50 条