共 50 条
Classification of separable surfaces with constant Gaussian curvature
被引:0
|作者:
Thomas Hasanis
Rafael López
机构:
[1] University of Ioannina,Department of Mathematics
[2] Universidad de Granada,Departamento de Geometría y Topología
来源:
关键词:
53A10;
53C42;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We classify all surfaces with constant Gaussian curvature K in Euclidean 3-space that can be expressed by an implicit equation of type f(x)+g(y)+h(z)=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(x)+g(y)+h(z)=0$$\end{document}, where f, g and h are real functions of one variable. If K=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K=0$$\end{document}, we prove that the surface is a surface of revolution, a cylindrical surface or a conical surface, obtaining explicit parametrizations of such surfaces. If K≠0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K\not =0$$\end{document}, we prove that the surface is a surface of revolution.
引用
收藏
页码:403 / 417
页数:14
相关论文