Classification of separable surfaces with constant Gaussian curvature

被引:0
|
作者
Thomas Hasanis
Rafael López
机构
[1] University of Ioannina,Department of Mathematics
[2] Universidad de Granada,Departamento de Geometría y Topología
来源
manuscripta mathematica | 2021年 / 166卷
关键词
53A10; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
We classify all surfaces with constant Gaussian curvature K in Euclidean 3-space that can be expressed by an implicit equation of type f(x)+g(y)+h(z)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)+g(y)+h(z)=0$$\end{document}, where f, g and h are real functions of one variable. If K=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=0$$\end{document}, we prove that the surface is a surface of revolution, a cylindrical surface or a conical surface, obtaining explicit parametrizations of such surfaces. If K≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\not =0$$\end{document}, we prove that the surface is a surface of revolution.
引用
下载
收藏
页码:403 / 417
页数:14
相关论文
共 50 条
  • [1] Classification of separable surfaces with constant Gaussian curvature
    Hasanis, Thomas
    Lopez, Rafael
    MANUSCRIPTA MATHEMATICA, 2021, 166 (3-4) : 403 - 417
  • [2] Phyllotaxis on surfaces of constant Gaussian curvature
    Sadoc, J. F.
    Charvolin, J.
    Rivier, N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (29)
  • [3] The Gaussian curvature of minimal surfaces and Heinz' constant
    Hall, RR
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 502 : 19 - 28
  • [4] Affine Translation Surfaces with Constant Gaussian Curvature
    Fu, Yu
    Hou, Zhong-Hua
    KYUNGPOOK MATHEMATICAL JOURNAL, 2010, 50 (02): : 337 - 343
  • [5] Hamiltonian formulation of surfaces with constant Gaussian curvature
    Trejo, Miguel
    Ben Amar, Martine
    Mueller, Martin Michael
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (42)
  • [6] Constant mean curvature proper-biharmonic surfaces of constant Gaussian curvature in spheres
    Loubeau, Eric
    Oniciuc, Cezar
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2016, 68 (03) : 997 - 1024
  • [7] Classification of Willmore Surfaces with Vanishing Gaussian Curvature
    Wu, Yunqing
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)
  • [8] Classification of Willmore Surfaces with Vanishing Gaussian Curvature
    Yunqing Wu
    The Journal of Geometric Analysis, 2023, 33
  • [9] Compact Surfaces with Constant Gaussian Curvature in Product Spaces
    Aledo, Juan A.
    Lozano, Victorino
    Pastor, Jose A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2010, 7 (03) : 263 - 270
  • [10] Compact Surfaces with Constant Gaussian Curvature in Product Spaces
    Juan A. Aledo
    Victorino Lozano
    José A. Pastor
    Mediterranean Journal of Mathematics, 2010, 7 : 263 - 270