Classification of separable surfaces with constant Gaussian curvature

被引:0
|
作者
Thomas Hasanis
Rafael López
机构
[1] University of Ioannina,Department of Mathematics
[2] Universidad de Granada,Departamento de Geometría y Topología
来源
manuscripta mathematica | 2021年 / 166卷
关键词
53A10; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
We classify all surfaces with constant Gaussian curvature K in Euclidean 3-space that can be expressed by an implicit equation of type f(x)+g(y)+h(z)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)+g(y)+h(z)=0$$\end{document}, where f, g and h are real functions of one variable. If K=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=0$$\end{document}, we prove that the surface is a surface of revolution, a cylindrical surface or a conical surface, obtaining explicit parametrizations of such surfaces. If K≠0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\not =0$$\end{document}, we prove that the surface is a surface of revolution.
引用
收藏
页码:403 / 417
页数:14
相关论文
共 50 条