A finite element based optimization algorithm to include diffusion into the analysis of DCE-MRI

被引:0
|
作者
Diego Sainz-DeMena
Wenfeng Ye
María Ángeles Pérez
José Manuel García-Aznar
机构
[1] University of Zaragoza,Department of Mechanical Engineering, Aragon Institute for Engineering Research (I3A)
[2] ANSYS France,undefined
来源
关键词
Finite element method; Inverse analysis; Pharmacokinetic modelling; Magnetic resonance imaging;
D O I
暂无
中图分类号
学科分类号
摘要
Pharmacokinetic (PK) models are used to extract physiological information from dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) sequences. Some of the most common models employed in clinical practice, such as the standard Tofts model (STM) or the extended Tofts model (ETM), do not account for passive delivery of contrast agent (CA) through diffusion. In this work, we introduce a diffusive term based on the concept of effective diffusivity into a finite element (FE) implementation of the ETM formulation, obtaining a new formulation for the diffusion-corrected ETM (D-ETM). A gradient-based optimization algorithm is developed to characterize the vascular properties of the tumour from the CA concentration curves obtained from imaging clinical data. To test the potential of our approach, several theoretical distributions of CA concentration are generated on a benchmark problem and a real tumour geometry. The vascular properties used to generate these distributions are estimated from an inverse analysis based on both the ETM and the D-ETM approaches. The outcome of these analyses shows the limitations of the ETM to retrieve accurate parameters in the presence of diffusion. The ETM returns smoothed distributions of vascular properties, reaching unphysical values in some of them, while the D-ETM accurately depicted the heterogeneity of KTrans, ve\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{e}$$\end{document} and vp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{p}$$\end{document} distributions (mean absolute relative difference (ARD) of 16%, 15% and 9%, respectively, for the real geometry case) keeping all their values within their physiological ranges, outperforming the ETM.
引用
收藏
页码:3849 / 3865
页数:16
相关论文
共 50 条
  • [41] Image analysis of renal DCE-MRI for the detection of acute renal rejection
    El-Baz, Ayman
    Farag, Aly
    Fahmi, Rachid
    Yuksela, Seniha
    El-Ghar, Mohamed A.
    Eldiasty, Tarek
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 822 - +
  • [42] DATforDCEMRI: An R Package for Deconvolution Analysis and Visualization of DCE-MRI Data
    Ferl, Gregory Z.
    JOURNAL OF STATISTICAL SOFTWARE, 2011, 44 (03): : 1 - 18
  • [43] How Heterogeneous is the Liver? A Cluster Analysis of DCE-MRI Time Series
    Mohajer, Mojgan
    Schmid, Volker J.
    Braren, Rickmer
    Noel, Peter B.
    Englmeier, Karl-Hans
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 2483 - 2487
  • [44] Texture-based simultaneous registration and segmentation of breast DCE-MRI
    Gong, Yang Can
    Brady, Michael
    DIGITAL MAMMOGRAPHY, PROCEEDINGS, 2008, 5116 : 174 - 180
  • [45] Comparison of analytical and numerical analysis of the reference region model for DCE-MRI
    Lee, Joonsang
    Cardenas-Rodriguez, Julio
    Pagel, Mark D.
    Platt, Simon
    Kent, Marc
    Zhao, Quri
    MAGNETIC RESONANCE IMAGING, 2014, 32 (07) : 845 - 853
  • [46] Stepwise heterogeneity analysis of breast tumors in perfusion DCE-MRI datasets
    Mohajer, Mojgan
    Schmid, Volker J.
    Engels, Nina A.
    Noel, Peter B.
    Rummeny, Ernst
    Englmeier, Karl-Hans
    MEDICAL IMAGING 2012: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2012, 8317
  • [47] The Effect of Histogram Analysis of DCE-MRI Parameters on Differentiating Renal Tumors
    Li, Hao
    Zhao, Sheng
    Fan, Hai Y.
    Li, Yan
    Wu, Xiao P.
    Miao, Yan P.
    CLINICAL LABORATORY, 2023, 69 (11) : 2201 - 2207
  • [48] ROBUST ESTIMATION OF PHARMACOKINETIC PARAMETERS IN DCE-MRI ANALYSIS OF RECTAL TUMOURS
    Tanner, L. N.
    Hughes, N. P.
    Brady, Michael
    Anderson, M.
    Gleeson, F. V.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 69 - +
  • [49] Partially-independent component analysis of tumor heterogeneities by DCE-MRI
    Zhang, JY
    Srikanchana, R
    Xuan, JH
    Choyke, P
    Li, K
    Wang, Y
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 222 - 233
  • [50] A CAD system based on multi-parametric analysis for cancer prostate detection on DCE-MRI
    Mazzetti, Simone
    De Luca, Massimo
    Bracco, Christian
    Vignati, Anna
    Giannini, Valentina
    Stasi, Michele
    Russo, Filippo
    Armando, Enrico
    Agliozzo, Silvano
    Regge, Daniele
    MEDICAL IMAGING 2011: COMPUTER-AIDED DIAGNOSIS, 2011, 7963