Texture-based simultaneous registration and segmentation of breast DCE-MRI

被引:0
|
作者
Gong, Yang Can [1 ]
Brady, Michael [1 ]
机构
[1] Univ Oxford, Wolfson Med Vis Lab, Oxford OX1 2JD, England
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a registration method for breast dynamic contrast-enhanced (DCE) MRI data based on texture information. The algorithm combines feature and spatial information to propose an image segmentation based on a Hidden Markov Random Measure Field (HMRMF) model using expectation-maximisation (EM) iteration. It can be sued to simultaneously estimate parameters in order to segment and register the images iteratively. Global motions are modeled by an affine transformation, while local breast motions are described using free-form deformations (FFD) based on B-splines. Experimental results on real DCE-MRI data are presented to demonstrate the performance of the algorithm.
引用
收藏
页码:174 / 180
页数:7
相关论文
共 50 条
  • [1] Texture based segmentation of breast DCE-MRI
    Gong, Yang Can
    Brady, Michael
    [J]. DIGITAL MAMMOGRAPHY, PROCEEDINGS, 2008, 5116 : 689 - 695
  • [2] Breast lesion segmentation in DCE-MRI Imaging
    Koper, Zuzanna
    Frackiewicz, Mariusz
    Palus, Henryk
    Borys, Damian
    Psiuk-Maksymowicz, Krzysztof
    [J]. 2018 14TH INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGY & INTERNET BASED SYSTEMS (SITIS), 2018, : 308 - 313
  • [3] DCE-MRI breast image registration for tumour diagnostics
    Kuczyn´ski, Karol
    Siczek, MacIej
    Stegierski, Rafal
    [J]. Advances in Intelligent and Soft Computing, 2011, 102 : 323 - 329
  • [4] Contrastive Learning-Based Breast Tumor Segmentation in DCE-MRI
    Guo, Shanshan
    Zhang, Jiadong
    Gu, Dongdong
    Gao, Fei
    Zhan, Yiqiang
    Xue, Zhong
    Shen, Dinggang
    [J]. MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2023, PT I, 2024, 14348 : 157 - 165
  • [5] Neural Machine Registration for Motion Correction in Breast DCE-MRI
    Aprea, Federica
    Marrone, Stefano
    Sansone, Carlo
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4332 - 4339
  • [6] A superpixel-based framework for automatic tumor segmentation on breast DCE-MRI
    Yu, Ning
    Wu, Jia
    Weinstein, Susan P.
    Gaonkar, Bilwaj
    Keller, Brad M.
    Ashraf, Ahmed B.
    Jiang, YunQing
    Davatzikos, Christos
    Conant, Emily F.
    Kontos, Despina
    [J]. MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414
  • [7] Image manifold revealing for breast lesion segmentation in DCE-MRI
    Hu, Liang
    Cheng, Zhaoning
    Wang, Manning
    Song, Zhijian
    [J]. BIO-MEDICAL MATERIALS AND ENGINEERING, 2015, 26 : S1353 - S1360
  • [8] Breast Tumor Segmentation in DCE-MRI With Tumor Sensitive Synthesis
    Wang, Shuai
    Sun, Kun
    Wang, Li
    Qu, Liangqiong
    Yan, Fuhua
    Wang, Qian
    Shen, Dinggang
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (08) : 4990 - 5001
  • [9] A Novel Automatic Segmentation Workflow of Axial Breast DCE-MRI
    Besbes, Feten
    Gargouri, Norhene
    Damak, Alima
    Sellami, Dorra
    [J]. TENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2017), 2018, 10696
  • [10] Fully automated deformable registration of breast DCE-MRI and PET/CT
    Dmitriev, I. D.
    Loo, C. E.
    Vogel, W. V.
    Pengel, K. E.
    Gilhuijs, K. G. A.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (04): : 1221 - 1233