Fully automated deformable registration of breast DCE-MRI and PET/CT

被引:26
|
作者
Dmitriev, I. D. [1 ]
Loo, C. E. [2 ]
Vogel, W. V. [3 ]
Pengel, K. E. [2 ]
Gilhuijs, K. G. A. [1 ,2 ]
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, NL-3508 GA Utrecht, Netherlands
[2] Netherlands Canc Inst Antoni van Leeuwenhoek Hosp, Dept Radiol, NL-1066 CX Amsterdam, Netherlands
[3] Netherlands Canc Inst Antoni van Leeuwenhoek Hosp, Dept Nucl Med, NL-1066 CX Amsterdam, Netherlands
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2013年 / 58卷 / 04期
关键词
FDG-PET; NONRIGID REGISTRATION; CANCER-DETECTION; HIGH-RISK; LESIONS; PRONE; CT; FLUORODEOXYGLUCOSE; MAMMOGRAPHY; DIAGNOSIS;
D O I
10.1088/0031-9155/58/4/1221
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate characterization of breast tumors is important for the appropriate selection of therapy and monitoring of the response. For this purpose breast imaging and tissue biopsy are important aspects. In this study, a fully automated method for deformable registration of DCE-MRI and PET/CT of the breast is presented. The registration is performed using the CT component of the PET/CT and the pre-contrast T1-weighted non-fat suppressed MRI. Comparable patient setup protocols were used during the MRI and PET examinations in order to avoid having to make assumptions of biomedical properties of the breast during and after the application of chemotherapy. The registration uses a multi-resolution approach to speed up the process and to minimize the probability of converging to local minima. The validation was performed on 140 breasts (70 patients). From a total number of registration cases, 94.2% of the breasts were aligned within 4.0 mm accuracy (1 PET voxel). Fused information may be beneficial to obtain representative biopsy samples, which in turn will benefit the treatment of the patient.
引用
收藏
页码:1221 / 1233
页数:13
相关论文
共 50 条
  • [1] A Fully Automated System for Quantification of Background Parenchymal Enhancement in Breast DCE-MRI
    Dalmis, Mehmet Ufuk
    Gubern-Merida, Albert
    Borelli, Cristina
    Vreemann, Suzan
    Mann, Ritse M.
    Karssemeijer, Nico
    [J]. MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785
  • [2] Automated localization of breast cancer in DCE-MRI
    Gubern-Merida, Albert
    Marti, Robert
    Melendez, Jaime
    Hauth, Jakob L.
    Mann, Ritse M.
    Karssemeijer, Nico
    Platel, Bram
    [J]. MEDICAL IMAGE ANALYSIS, 2015, 20 (01) : 265 - 274
  • [3] The influence of sampling percentage in deformable registration on kinetic model analysis results in DCE-MRI of the breast
    Mouawad, Matthew
    Biernaski, Heather
    Brackstone, Muriel
    Klassen, Martyn
    Lock, Michael
    Prato, Frank S.
    Thompson, R. Terry
    Gaede, Stewart
    Gelman, Neil
    [J]. MEDICAL PHYSICS, 2016, 43 (08) : 4951 - 4951
  • [4] DCE-MRI breast image registration for tumour diagnostics
    Kuczyn´ski, Karol
    Siczek, MacIej
    Stegierski, Rafal
    [J]. Advances in Intelligent and Soft Computing, 2011, 102 : 323 - 329
  • [5] Neural Machine Registration for Motion Correction in Breast DCE-MRI
    Aprea, Federica
    Marrone, Stefano
    Sansone, Carlo
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4332 - 4339
  • [6] A ROBUST AND EXTENDABLE FRAMEWORK TOWARDS FULLY AUTOMATED DIAGNOSIS OF NONMASS LESIONS IN BREAST DCE-MRI
    Wang, Lei
    Harz, Markus
    Boehler, Tobias
    Platel, Bram
    Homeyer, Andre
    Hahn, Horst K.
    [J]. 2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2014, : 129 - 132
  • [7] Texture-based simultaneous registration and segmentation of breast DCE-MRI
    Gong, Yang Can
    Brady, Michael
    [J]. DIGITAL MAMMOGRAPHY, PROCEEDINGS, 2008, 5116 : 174 - 180
  • [8] Fully automated tumor localization and segmentation in breast DCE-MRI using deep learning and kinetic prior
    Zhang, Lei
    Arefan, Dooman
    Guo, Yuan
    Wu, Shandong
    [J]. MEDICAL IMAGING 2020: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2020, 11318
  • [9] Performance of a Fully Automatic Lesion Detection System for Breast DCE-MRI
    Vignati, Anna
    Giannini, Valentina
    De Luca, Massimo
    Morra, Lia
    Persano, Diego
    Carbonaro, Luca A.
    Bertotto, Ilaria
    Martincich, Laura
    Regge, Daniele
    Bert, Alberto
    Sardanelli, Francesco
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2011, 34 (06) : 1341 - 1351
  • [10] A non-linear registration method for DCE-MRI and DCE-CT comparison in bladder tumors
    Passera, K.
    Mainardi, L.
    McGrath, D.
    Naish, J.
    Buckley, D. L.
    Cheung, S.
    Watson, Y.
    Caunce, A.
    Buonaccorsi, G.
    Logue, J. P.
    Taylor, M. B.
    Taylor, C.
    Waterton, J. C.
    Young, H.
    Parker, G. J. M.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 1095 - +