Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data

被引:0
|
作者
Coral Fustero-Torre
María José Jiménez-Santos
Santiago García-Martín
Carlos Carretero-Puche
Luis García-Jimeno
Vadym Ivanchuk
Tomás Di Domenico
Gonzalo Gómez-López
Fátima Al-Shahrour
机构
[1] Spanish National Cancer Research Centre (CNIO),Bioinformatics Unit
[2] Hospital 12 de Octubre,Laboratorio de Oncología Clínico
[3] Spanish National Cancer Research Centre (CNIO),Traslacional, Unidad de Investigación en tumores Digestivos, Instituto de Investigación I+12
来源
关键词
Single-cell RNA-seq; Intratumoural heterogeneity; Drug repositioning; Therapeutic clusters; Personalised therapy;
D O I
暂无
中图分类号
学科分类号
摘要
We present Beyondcell, a computational methodology for identifying tumour cell subpopulations with distinct drug responses in single-cell RNA-seq data and proposing cancer-specific treatments. Our method calculates an enrichment score in a collection of drug signatures, delineating therapeutic clusters (TCs) within cellular populations. Additionally, Beyondcell determines the therapeutic differences among cell populations and generates a prioritised sensitivity-based ranking in order to guide drug selection. We performed Beyondcell analysis in five single-cell datasets and demonstrated that TCs can be exploited to target malignant cells both in cancer cell lines and tumour patients. Beyondcell is available at: https://gitlab.com/bu_cnio/beyondcell.
引用
收藏
相关论文
共 50 条
  • [1] Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data
    Fustero-Torre, Coral
    Jimenez-Santos, Maria Jose
    Garcia-Martin, Santiago
    Carretero-Puche, Carlos
    Garcia-Jimeno, Luis
    Ivanchuk, Vadym
    Di Domenico, Tomas
    Gomez-Lopez, Gonzalo
    Al-Shahrour, Fatima
    [J]. GENOME MEDICINE, 2021, 13 (01)
  • [2] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    McDavid, Andrew
    Finak, Greg
    Gottardo, Raphael
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (06) : 591 - 593
  • [3] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    Andrew McDavid
    Greg Finak
    Raphael Gottardo
    [J]. Nature Biotechnology, 2016, 34 : 591 - 593
  • [4] Reply to The contribution of cell cycle to heterogeneity in single-cell RNA-seq data
    Andrew McDavid
    Greg Finak
    Raphael Gottardo
    [J]. Nature Biotechnology, 2016, 34 : 593 - 595
  • [5] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data Reply
    不详
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (06) : 593 - 595
  • [6] scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
    Yunfan Li
    Dan Zhang
    Mouxing Yang
    Dezhong Peng
    Jun Yu
    Yu Liu
    Jiancheng Lv
    Lu Chen
    Xi Peng
    [J]. Nature Communications, 14
  • [7] scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
    Li, Yunfan
    Zhang, Dan
    Yang, Mouxing
    Peng, Dezhong
    Yu, Jun
    Liu, Yu
    Lv, Jiancheng
    Chen, Lu
    Peng, Xi
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [8] Single-cell RNA-seq variant analysis for exploration of genetic heterogeneity in cancer
    Erik Fasterius
    Mathias Uhlén
    Cristina Al-Khalili Szigyarto
    [J]. Scientific Reports, 9
  • [9] Single-cell RNA-seq variant analysis for exploration of genetic heterogeneity in cancer
    Fasterius, Erik
    Uhlen, Mathias
    Szigyarto, Cristina Al-Khalili
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [10] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    [J]. GENOME BIOLOGY, 2019, 20 (1)