An unsupervised deep learning framework for predicting human essential genes from population and functional genomic data

被引:0
|
作者
Troy M. LaPolice
Yi-Fei Huang
机构
[1] Pennsylvania State University,Department of Biology
[2] Pennsylvania State University,Bioinformatics and Genomics Graduate Program
[3] Pennsylvania State University,Huck Institutes of the Life Sciences
来源
关键词
Deep Learning; Unsupervised; Essential Genes; Loss of Function Intolerance; Population Genomics; Functional Genomics;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] DeepHBSP: A Deep Learning Framework for Predicting Human Blood-Secretory Proteins Using Transfer Learning
    Wei Du
    Yu Sun
    Hui-Min Bao
    Liang Chen
    Ying Li
    Yan-Chun Liang
    Journal of Computer Science and Technology, 2021, 36 : 234 - 247
  • [22] DeepHBSP: A Deep Learning Framework for Predicting Human Blood-Secretory Proteins Using Transfer Learning
    Du, Wei
    Sun, Yu
    Bao, Hui-Min
    Chen, Liang
    Li, Ying
    Liang, Yan-Chun
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2021, 36 (02) : 234 - 247
  • [23] Predicting composite microstructure from deformation data using deep learning
    Gu, Aijun
    Sang, Sheng
    AIP ADVANCES, 2024, 14 (07)
  • [24] From shallow to deep: some lessons learned from application of machine learning for recognition of functional genomic elements in human genome
    Jankovic, Boris
    Gojobori, Takashi
    HUMAN GENOMICS, 2022, 16 (01)
  • [25] From shallow to deep: some lessons learned from application of machine learning for recognition of functional genomic elements in human genome
    Boris Jankovic
    Takashi Gojobori
    Human Genomics, 16
  • [26] Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework
    Yang, Jinyu
    Ma, Anjun
    Hoppe, Adam D.
    Wang, Cankun
    Li, Yang
    Zhang, Chi
    Wang, Yan
    Liu, Bingqiang
    Ma, Qin
    NUCLEIC ACIDS RESEARCH, 2019, 47 (15) : 7809 - 7824
  • [27] Deep Online Hierarchical Unsupervised Learning for Pattern Mining from Utility Usage Data
    Mohamad, Saad
    Arifoglu, Damla
    Mansouri, Chemseddine
    Bouchachia, Abdelhamid
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS (UKCI), 2019, 840 : 276 - 290
  • [28] Calibration Tool for Genomic Aggregates (CTGA): A deep learning framework for calibrating somatic mutation profiling data from conventional gene panel data
    Anaya, Jordan
    Cummings, Craig
    Lee, Jocelyn
    Baras, Alexander
    CANCER RESEARCH, 2020, 80 (16)
  • [29] A deep learning approach to prediction of blood group antigens from genomic data
    Moslemi, Camous
    Saekmose, Susanne
    Larsen, Rune
    Brodersen, Thorsten
    Bay, Jakob T.
    Didriksen, Maria
    Nielsen, Kaspar R.
    Bruun, Mie T.
    Dowsett, Joseph
    Dinh, Khoa M.
    Mikkelsen, Christina
    Hyvarinen, Kati
    Ritari, Jarmo
    Partanen, Jukka
    Ullum, Henrik
    Erikstrup, Christian
    Ostrowski, Sisse R.
    Olsson, Martin L.
    Pedersen, Ole B.
    TRANSFUSION, 2024,
  • [30] Learning Human Activity From Visual Data Using Deep Learning
    Alhersh, Taha
    Stuckenschmidt, Heiner
    Rehman, Atiq Ur
    Belhaouari, Samir Brahim
    IEEE ACCESS, 2021, 9 : 106245 - 106253