Prediction of regulatory motifs from human Chip-sequencing data using a deep learning framework

被引:46
|
作者
Yang, Jinyu [1 ,2 ]
Ma, Anjun [1 ]
Hoppe, Adam D. [3 ,4 ]
Wang, Cankun [1 ]
Li, Yang [5 ]
Zhang, Chi [6 ]
Wang, Yan [7 ]
Liu, Bingqiang [5 ]
Ma, Qin [1 ]
机构
[1] Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USA
[2] Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76010 USA
[3] South Dakota State Univ, Dept Chem & Biochem, Brookings, SD 57007 USA
[4] BioSNTR, Brookings, SD 57007 USA
[5] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[6] Indiana Univ Sch Med, Dept Med & Mol Genet, Indianapolis, IN 46202 USA
[7] Jilin Univ, Sch Artificial Intelligence, Changchun 130012, Jilin, Peoples R China
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DNA-BINDING SPECIFICITIES; TRANSCRIPTION FACTORS; PROTEIN; GENOME; SHAPE; ELEMENTS; FEATURES; ENCYCLOPEDIA; RECOGNITION; EXPRESSION;
D O I
10.1093/nar/gkz672
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The identification of transcription factor binding sites and cis-regulatory motifs is a frontier whereupon the rules governing protein-DNA binding are being revealed. Here, we developed a new method (DEep Sequence and Shape mOtif or DESSO) for cis-regulatory motif prediction using deep neural networks and the binomial distribution model. DESSO outperformed existing tools, including Deep-Bind, in predicting motifs in 690 human ENCODE ChIP-sequencing datasets. Furthermore, the deep-learning framework of DESSO expanded motif discovery beyond the state-of-the-art by allowing the identification of known and new protein-protein-DNA tethering interactions in human transcription factors (TFs). Specifically, 61 putative tethering interactions were identified among the 100 TFs expressed in the K562 cell line. In this work, the power of DESSO was further expanded by integrating the detection of DNA shape features. We found that shape information has strong predictive power for TF-DNA binding and provides new putative shape motif information for human TFs. Thus, DESSO improves in the identification and structural analysis of TF binding sites, by integrating the complexities of DNA binding into a deep-learning framework.
引用
收藏
页码:7809 / 7824
页数:16
相关论文
共 50 条
  • [1] Mitochondrial heteroplasmy in vertebrates using ChIP-sequencing data
    Thomas Rensch
    Diego Villar
    Julie Horvath
    Duncan T. Odom
    Paul Flicek
    [J]. Genome Biology, 17
  • [2] Mitochondrial heteroplasmy in vertebrates using ChIP-sequencing data
    Rensch, Thomas
    Villar, Diego
    Horvath, Julie
    Odom, Duncan T.
    Flicek, Paul
    [J]. GENOME BIOLOGY, 2016, 17
  • [3] A Comprehensive Analysis Workflow for Genome-Wide Screening Data from ChIP-Sequencing Experiments
    Ozer, Hatice Gulcin
    Bozdag, Doruk
    Camerlengo, Terry
    Wu, Jiejun
    Huang, Yi-Wen
    Hartley, Tim
    Parvin, Jeffrey D.
    Huang, Tim
    Catalyurek, Umit V.
    Huang, Kun
    [J]. BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, PROCEEDINGS, 2009, 5462 : 320 - +
  • [4] MBISON: Finding miRNA target over-representation in gene lists from ChIP-sequencing data
    Gebhardt M.L.
    Mer A.S.
    Andrade-Navarro M.A.
    [J]. BMC Research Notes, 8 (1)
  • [5] An Ensembled Framework for Human Breast Cancer Survivability Prediction Using Deep Learning
    Mustafa, Ehzaz
    Jadoon, Ehtisham Khan
    Khaliq-uz-Zaman, Sardar
    Humayun, Mohammad Ali
    Maray, Mohammed
    [J]. DIAGNOSTICS, 2023, 13 (10)
  • [6] A deep-learning framework considering multiple motifs for traffic travel time prediction
    Yao, Baozhen
    Chen, Sixuan
    Nie, Xiaoqi
    Ma, Ankun
    Zhang, Mingheng
    [J]. PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-TRANSPORT, 2024, 177 (05) : 293 - 304
  • [7] A novel framework for spatio-temporal prediction of environmental data using deep learning
    Federico Amato
    Fabian Guignard
    Sylvain Robert
    Mikhail Kanevski
    [J]. Scientific Reports, 10
  • [8] Deep hybrid learning framework for spatiotemporal crash prediction using big traffic data
    Kashifi, Mohammad Tamim
    Al-Turki, Mohammed
    Sharify, Abdul Wakil
    [J]. INTERNATIONAL JOURNAL OF TRANSPORTATION SCIENCE AND TECHNOLOGY, 2023, 12 (03) : 793 - 808
  • [9] A novel framework for spatio-temporal prediction of environmental data using deep learning
    Amato, Federico
    Guignard, Fabian
    Robert, Sylvain
    Kanevski, Mikhail
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [10] Learning Human Activity From Visual Data Using Deep Learning
    Alhersh, Taha
    Stuckenschmidt, Heiner
    Rehman, Atiq Ur
    Belhaouari, Samir Brahim
    [J]. IEEE ACCESS, 2021, 9 : 106245 - 106253