Weighted estimates for conic Fourier multipliers

被引:0
|
作者
Antonio Córdoba
Keith M. Rogers
机构
[1] Universidad Autónoma de Madrid,Departamento de Matemáticas and Instituto de Ciencias Matemáticas CSIC
[2] Consejo Superior de Investigaciones Científicas,UAM
来源
Mathematische Zeitschrift | 2014年 / 278卷
关键词
Fourier multipliers; Maximal operators; Lacunary directions; Primary 42B25; Secondary 26B05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a weighted inequality which controls conic Fourier multiplier operators in terms of lacunary directional maximal operators. By bounding the maximal operators, this enables us to conclude that the multiplier operators are bounded on Lp(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p(\mathbb {R}^3)$$\end{document} with 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}.
引用
收藏
页码:431 / 440
页数:9
相关论文
共 50 条
  • [41] UNCONDITIONALITY, FOURIER MULTIPLIERS AND SCHUR MULTIPLIERS
    Arhancet, Cedric
    COLLOQUIUM MATHEMATICUM, 2012, 127 (01) : 17 - 37
  • [42] Quantitative weighted estimates for the Littlewood-Paley square function and Marcinkiewicz multipliers
    Lerner, Andrei K.
    MATHEMATICAL RESEARCH LETTERS, 2019, 26 (02) : 537 - 556
  • [43] SUPPORT DEPENDENT WEIGHTED NORM ESTIMATES FOR FOURIER-TRANSFORMS
    PANEAH, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (02) : 552 - 574
  • [44] WEIGHTED NORM ESTIMATES FOR THE FOURIER-TRANSFORM WITH A PAIR OF WEIGHTS
    STROMBERG, JO
    WHEEDEN, RL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 318 (01) : 355 - 372
  • [45] Weighted Estimates for Bilinear Fourier Multiplier Operators with Multiple Weights
    Guoen Hu
    Zhidan Wang
    Qingying Xue
    Kôzô Yabuta
    The Journal of Geometric Analysis, 2021, 31 : 2152 - 2171
  • [46] Weighted Estimates for Bilinear Fourier Multiplier Operators with Multiple Weights
    Hu, Guoen
    Wang, Zhidan
    Xue, Qingying
    Yabuta, Kozo
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (02) : 2152 - 2171
  • [47] Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers
    Cláudio A. Fernandes
    Alexei Yu. Karlovich
    Yuri I. Karlovich
    Banach Journal of Mathematical Analysis, 2021, 15
  • [48] Banach algebras of Fourier multipliers equivalent at infinity to nice Fourier multipliers
    Fernandes, Claudio A.
    Karlovich, Alexei Yu.
    Karlovich, Yuri I.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (02)
  • [49] Reconstruction of singularities from full scattering data by new estimates of bilinear Fourier multipliers
    Barcelo, J. A.
    Faraco, D.
    Ruiz, A.
    Vargas, A.
    MATHEMATISCHE ANNALEN, 2010, 346 (03) : 505 - 544
  • [50] Reconstruction of singularities from full scattering data by new estimates of bilinear Fourier multipliers
    J. A. Barceló
    D. Faraco
    A. Ruiz
    A. Vargas
    Mathematische Annalen, 2010, 346 : 505 - 544