We prove a weighted inequality which controls conic Fourier multiplier operators in terms of lacunary directional maximal operators. By bounding the maximal operators, this enables us to conclude that the multiplier operators are bounded on Lp(R3)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^p(\mathbb {R}^3)$$\end{document} with 1<p<∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1<p<\infty $$\end{document}.
机构:
Razmadze Mathematical Institute, Academy of Sciences of Georgia, Tbilisi 0193Razmadze Mathematical Institute, Academy of Sciences of Georgia, Tbilisi 0193
Kokilashvili V.M.
Samko S.G.
论文数: 0引用数: 0
h-index: 0
机构:
University of Algarve, Faro 8000-810, Campus de GambelasRazmadze Mathematical Institute, Academy of Sciences of Georgia, Tbilisi 0193
机构:
Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
Univ Pedag, Dept Math, Ho Chi Minh City, VietnamMacquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
Bui, The Anh
Duong, Xuan Thinh
论文数: 0引用数: 0
h-index: 0
机构:
Macquarie Univ, Dept Math, N Ryde, NSW 2109, AustraliaMacquarie Univ, Dept Math, N Ryde, NSW 2109, Australia