On the Nitsche conjecture for harmonic mappings in ℝ2 and ℝ3

被引:0
|
作者
David Kalaj
机构
[1] University of Montenegro,Faculty of Natural Sciences and Mathematics
来源
关键词
Harmonic Mapping; Quasiconformal Mapping; Ring Domain; Annular Region; Extremal Length;
D O I
暂无
中图分类号
学科分类号
摘要
We give the new inequality related to the J. C. C. Nitsche conjecture (see [6]). Moreover, we consider the two- and three-dimensional case. LetA(r, 1)={z:r<|z|<1}. Nitsche's conjecture states that if there exists a univalent harmonic mapping from an annulusA(r, 1), to an annulusA(s, 1), thens is at most 2r/(r2+1).
引用
收藏
页码:241 / 251
页数:10
相关论文
共 50 条