A note on the ρ-Nitsche conjecture

被引:0
|
作者
Feng, Xiaogao [1 ,2 ]
Tang, Shuan [3 ]
机构
[1] Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
[2] China West Normal Univ, Coll Math & Informat, Nanchong 637002, Peoples R China
[3] Guizhou Normal Univ, Dept Math, Guiyang 550001, Peoples R China
基金
中国国家自然科学基金;
关键词
rho-Nitsche conjecture; Nitsche conjecture; Harmonic mapping; rho-Harmonic mapping; UNIVALENT HARMONIC-MAPPINGS; MEAN DISTORTION; ANNULI; DEFORMATIONS; SURFACES;
D O I
10.1007/s00013-016-0906-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be a radial symmetric Riemannian metric defined in the annulus A(1, R). Kalaj conjectured that if there exists a -harmonic homeomorphism from the annulus A(1, r) onto A(1, R), then R satisfies the following -Nitsche condition In this note, we prove that if , then there exists a -harmonic mapping between A(1, r) and A(1, R) if and only if , i.e. the -Nitsche condition holds. This gives a positive answer to Kalaj's conjecture for . Some related topics are also discussed.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条