On the Nitsche conjecture for harmonic mappings in ℝ2 and ℝ3

被引:0
|
作者
David Kalaj
机构
[1] University of Montenegro,Faculty of Natural Sciences and Mathematics
来源
关键词
Harmonic Mapping; Quasiconformal Mapping; Ring Domain; Annular Region; Extremal Length;
D O I
暂无
中图分类号
学科分类号
摘要
We give the new inequality related to the J. C. C. Nitsche conjecture (see [6]). Moreover, we consider the two- and three-dimensional case. LetA(r, 1)={z:r<|z|<1}. Nitsche's conjecture states that if there exists a univalent harmonic mapping from an annulusA(r, 1), to an annulusA(s, 1), thens is at most 2r/(r2+1).
引用
收藏
页码:241 / 251
页数:10
相关论文
共 50 条
  • [31] HARMONIC SPHERES CONJECTURE
    Sergeev, A. G.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 164 (03) : 1140 - 1150
  • [32] Neighborhoods of Harmonic and Stable Harmonic Mappings
    Bhowmik, Bappaditya
    Majee, Santana
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (04)
  • [33] Invertible Harmonic and Harmonic Quasiconformal Mappings
    Mateljevic, Miodrag
    [J]. FILOMAT, 2015, 29 (09) : 1953 - 1967
  • [34] A unified approach to the weighted Grotzsch and Nitsche problems for mappings of finite distortion
    Feng XiaoGao
    Tang ShuAn
    Wu Chong
    Shen YuLiang
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (04) : 673 - 686
  • [35] On harmonic entire mappings
    Hua Deng
    Saminathan Ponnusamy
    Jinjing Qiao
    Yanan Shan
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [36] ON A CLASS OF HARMONIC MAPPINGS
    SCHECTER, S
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (04) : 354 - 354
  • [37] Normal harmonic mappings
    Hugo Arbeláez
    Rodrigo Hernández
    Willy Sierra
    [J]. Monatshefte für Mathematik, 2019, 190 : 425 - 439
  • [38] Harmonic Teichmuller mappings
    Chen, Xingdi
    Fang, Ainong
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2006, 82 (07) : 101 - 105
  • [39] Rosette Harmonic Mappings
    McDougall, Jane
    Stierman, Lauren
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (04)
  • [40] On stable harmonic mappings
    Bhowmik, Bappaditya
    Majee, Santana
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (06)