A family of 4-point odd-ary non-stationary subdivision schemes

被引:0
|
作者
Mustafa G. [1 ]
Ashraf P. [1 ]
机构
[1] Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur
关键词
Interpolating scheme; Lagrange polynomial; Non-stationary; Odd-ary scheme;
D O I
10.1007/s40324-014-0029-2
中图分类号
学科分类号
摘要
In this article, we present a family of 4-point odd-ary interpolating non-stationary schemes. This family of schemes is based on Lagrange trigonometric polynomial. These non-stationary schemes reproduce functions spanned by { 1 , cos α(x) , sin α(x) }. Some examples are also given to show visual performance of the schemes. © 2014, Sociedad Española de Matemática Aplicada.
引用
收藏
页码:77 / 91
页数:14
相关论文
共 50 条
  • [41] From approximating to interpolatory non-stationary subdivision schemes with the same generation properties
    Conti, Costanza
    Gemignani, Luca
    Romani, Lucia
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2011, 35 (2-4) : 217 - 241
  • [42] A new class of non-stationary interpolatory subdivision schemes based on exponential polynomials
    Choi, Yoo-Joo
    Lee, Yeon-Ju
    Yoon, Jungho
    Lee, Byung-Gook
    Kim, Young J.
    [J]. GEOMETRIC MODELING AND PROCESSING - GMP 2006, PROCEEDINGS, 2006, 4077 : 563 - 570
  • [43] A non-stationary binary three-point approximating subdivision scheme
    Tan, Jieqing
    Sun, Jiaze
    Tong, Guanyue
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 37 - 43
  • [44] Matrix-valued 4-point spline and 3-point non-spline interpolatory curve subdivision schemes
    Chui, Charles K.
    Jiang, Qingtang
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (07) : 797 - 809
  • [45] Family of a-point b-ary subdivision schemes with bell-shaped mask
    Hameed, Rabia
    Mustafa, Ghulam
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 309 : 289 - 302
  • [46] 4-point subdivision scheme with three parameters
    Zhao, HQ
    Hou, J
    Ye, ZL
    Peneg, GH
    Ren, SL
    [J]. Progress in Intelligence Computation & Applications, 2005, : 409 - 412
  • [47] Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix
    Maria Charina
    Costanza Conti
    Lucia Romani
    [J]. Numerische Mathematik, 2014, 127 : 223 - 254
  • [48] Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix
    Charina, Maria
    Conti, Costanza
    Romani, Lucia
    [J]. NUMERISCHE MATHEMATIK, 2014, 127 (02) : 223 - 254
  • [49] A Non-stationary Combined Ternary 5-point Subdivision Scheme with C4 Continuity
    Zhang, Zeze
    Zheng, Hongchan
    Song, Weijie
    Zhang, Baoxing
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (05): : 1259 - 1281
  • [50] Non-stationary versions of fixed-point theory, with applications to fractals and subdivision
    David Levin
    Nira Dyn
    Viswanathan Puthan Veedu
    [J]. Journal of Fixed Point Theory and Applications, 2019, 21