Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix

被引:38
|
作者
Charina, Maria [1 ]
Conti, Costanza [2 ]
Romani, Lucia [3 ]
机构
[1] TU Dortmund, Fak Math, D-44221 Dortmund, Germany
[2] Univ Florence, Dipartimento Ingn Ind, I-50134 Florence, Italy
[3] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
LINEAR INDEPENDENCE; BOX SPLINES; INTERPOLATION;
D O I
10.1007/s00211-013-0587-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study scalar multivariate non-stationary subdivision schemes with a general integer dilation matrix. We characterize the capability of such schemes to reproduce exponential polynomials in terms of simple algebraic conditions on their symbols. These algebraic conditions provide a useful theoretical tool for checking the reproduction properties of existing schemes and for constructing new schemes with desired reproduction capabilities and other enhanced properties. We illustrate our results with several examples.
引用
收藏
页码:223 / 254
页数:32
相关论文
共 50 条
  • [1] Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix
    Maria Charina
    Costanza Conti
    Lucia Romani
    [J]. Numerische Mathematik, 2014, 127 : 223 - 254
  • [2] Non-stationary Subdivision for Exponential Polynomials Reproduction
    Bao-jun LI
    Zhi-ling YU
    Bo-wen YU
    Zhi-xun SU
    Xiu-ping LIU
    [J]. Acta Mathematicae Applicatae Sinica, 2013, (03) : 567 - 578
  • [3] Non-stationary Subdivision for Exponential Polynomials Reproduction
    Baojun LI
    Zhiling YU
    Bowen YU
    Zhixun SU
    Xiuping LIU
    [J]. Acta Mathematicae Applicatae Sinica(English Series), 2013, 29 (03) : 567 - 578
  • [4] Non-stationary Subdivision for Exponential Polynomials Reproduction
    Li, Bao-jun
    Yu, Zhi-ling
    Yu, Bo-wen
    Su, Zhi-xun
    Liu, Xiu-ping
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 567 - 578
  • [5] Non-stationary subdivision for exponential polynomials reproduction
    Bao-jun Li
    Zhi-ling Yu
    Bo-wen Yu
    Zhi-xun SU
    Xiu-ping Liu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 567 - 578
  • [6] A family of non-stationary subdivision schemes reproducing exponential polynomials
    Jeong, Byeongseon
    Lee, Yeon Ju
    Yoon, Jungho
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (01) : 207 - 219
  • [7] Non-stationary subdivision schemes for surface interpolation based on exponential polynomials
    Lee, Yeon Ju
    Yoon, Jungho
    [J]. APPLIED NUMERICAL MATHEMATICS, 2010, 60 (1-2) : 130 - 141
  • [8] Analysis of non-stationary Hermite subdivision schemes reproducing exponential polynomials
    Jeong, Byeongseon
    Yoon, Jungho
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 349 : 452 - 469
  • [9] A new class of non-stationary interpolatory subdivision schemes based on exponential polynomials
    Choi, Yoo-Joo
    Lee, Yeon-Ju
    Yoon, Jungho
    Lee, Byung-Gook
    Kim, Young J.
    [J]. GEOMETRIC MODELING AND PROCESSING - GMP 2006, PROCEEDINGS, 2006, 4077 : 563 - 570
  • [10] A new family of non-stationary hermite subdivision schemes reproducing exponential polynomials
    Jeong, Byeongseon
    Yoon, Jungho
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 366 (366)