Bilinear Optimal Control of the Keller–Segel Logistic Model in 2D-Domains

被引:0
|
作者
P. Braz e Silva
F. Guillén-González
C. F. Perusato
M. A. Rodríguez-Bellido
机构
[1] Universidade Federal de Pernambuco,Dpto. Matemática
[2] Universidad de Sevilla,Dpto. Ecuaciones Diferenciales y Análisis Numérico and IMUS, Facultad de Matemáticas
来源
关键词
Chemotaxis model; Logistic reaction; Weak solutions; Bilinear optimal control; Optimality conditions; 35K51; 35Q92; 49J20; 49K20;
D O I
暂无
中图分类号
学科分类号
摘要
An optimal control problem associated to the Keller–Segel with logistic reaction system is studied in 2D domains. The control acts in a bilinear form only in the chemical equation. The existence of an optimal control and a necessary optimality system are deduced. The main novelty is that the control can be rather singular and the state (cell density u and the chemical concentration v) remains only in a weak setting, which is not usual in the literature.
引用
收藏
相关论文
共 50 条
  • [21] Existence, Stability and Slow Dynamics of Spikes in a 1D Minimal Keller-Segel Model with Logistic Growth
    Kong, Fanze
    Ward, Michael J.
    Wei, Juncheng
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (03)
  • [22] The 2-D stochastic Keller-Segel particle model: existence and uniqueness
    Cattiaux, Patrick
    Pedeches, Laure
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 13 (01): : 447 - 463
  • [23] Optimal critical mass in the two dimensional Keller-Segel model in R2
    Dolbeault, J
    Perthame, B
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) : 611 - 616
  • [24] The existence and stability of spikes in the one-dimensional Keller-Segel model with logistic growth
    Kong, Fanze
    Wei, Juncheng
    Xu, Liangshun
    JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 86 (01)
  • [25] On a Cahn-Hilliard-Keller-Segel model with generalized logistic source describing tumor growth
    Rocca, Elisabetta
    Schimperna, Giulio
    Signori, Andrea
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 343 : 530 - 578
  • [26] LARGE TIME BEHAVIOR IN THE LOGISTIC KELLER-SEGEL MODEL VIA MAXIMAL SOBOLEV REGULARITY
    Cao, Xinru
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (09): : 3369 - 3378
  • [27] Optimal bilinear control problem related to a chemo-repulsion system in 2D domains
    Guillen-Gonzalez, Francisco
    Mallea-Zepeda, Exequiel
    Angeles Rodriguez-Bellido, Maria
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [28] Well-posedness and blow-up of the fractional Keller-Segel model on domains
    Costa, Masterson
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (12) : 5569 - 5592
  • [29] Generalized piecewise constant orthogonal wavelet bases on 2D-domains
    Pop, Vasile
    Rosca, Daniela
    APPLICABLE ANALYSIS, 2011, 90 (3-4) : 715 - 723
  • [30] A new result for boundedness in the quasilinear parabolic-parabolic Keller-Segel model (with logistic source)
    Liu, Ling
    Zheng, Jiashan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (04) : 1208 - 1221