An optimal online algorithm for the parallel-batch scheduling with job processing time compatibilities

被引:0
|
作者
Ruyan Fu
Ji Tian
Shisheng Li
Jinjiang Yuan
机构
[1] China University of Mining and Technology,School of Mathematics
[2] Zhongyuan University of Technology,Department of Information and Computation Science
[3] Zhengzhou University,School of Mathematics and Statistics
来源
关键词
Online scheduling; Batch machine; Compatibility; Competitive ratio;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the online (over time) scheduling on a single unbounded parallel-batch machine with job processing time compatibilities to minimize makespan. In the problem, a constant α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} is given in advance. Each job Jj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{j}$$\end{document} has a normal processing time pj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_j$$\end{document}. Two jobs Ji\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_i$$\end{document} and Jj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_j$$\end{document} are compatible if max{pi,pj}≤(1+α)·min{pi,pj}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{p_i, p_j\} \le (1+\alpha )\cdot \min \{p_i, p_j\}$$\end{document}. In the problem, mutually compatible jobs can form a batch being processed on the machine. The processing time of a batch is equal to the maximum normal processing time of the jobs in this batch. For this problem, we provide an optimal online algorithm with a competitive ratio of 1+βα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\beta _\alpha $$\end{document}, where βα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _\alpha $$\end{document} is the positive root of the equation (1+α)x2+αx=1+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+\alpha )x^{2}+\alpha x=1+\alpha $$\end{document}.
引用
收藏
页码:1187 / 1197
页数:10
相关论文
共 50 条
  • [21] Single-Machine Parallel-Batch Scheduling with Nonidentical Job Sizes and Rejection
    Jin, Miaomiao
    Liu, Xiaoxia
    Luo, Wenchang
    [J]. MATHEMATICS, 2020, 8 (02)
  • [22] Online algorithms for scheduling unit length jobs on parallel-batch machines with lookahead
    Li, Wenhua
    Zhang, Zhenkun
    Yang, Sufang
    [J]. INFORMATION PROCESSING LETTERS, 2012, 112 (07) : 292 - 297
  • [23] Scheduling an unbounded batching machine with job processing time compatibilities
    Bellanger, A.
    Janiak, A.
    Kovalyov, M. Y.
    Oulamara, A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) : 15 - 23
  • [24] Bounded Parallel-Batch Scheduling on Unrelated Parallel Machines
    Miao, Cuixia
    Zhang, Yuzhong
    Wang, Chengfei
    [J]. ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, 2010, 6124 : 220 - 228
  • [25] Optimal Semi-online Algorithm for Scheduling on a Batch Processing Machine
    Liu, Ming
    Xu, Yinfeng
    Chu, Chengbin
    Wang, Lu
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2009, 5573 : 346 - +
  • [26] OPTIMAL SEMI-ONLINE ALGORITHM FOR SCHEDULING ON A BATCH PROCESSING MACHINE
    Liu, Ming
    Xu, Yinfeng
    Chu, Chengbin
    Wang, Lu
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2009, 1 (02) : 219 - 226
  • [27] Online Scheduling on Two Uniform Unbounded Parallel-Batch Machines to Minimize Makespan
    Yuan, Jin-Jiang
    Ren, Li-Li
    Tian, Ji
    Fu, Ru-Yan
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2019, 7 (02) : 303 - 319
  • [28] Parallel-Batch Scheduling With Deterioration and Group Technology
    Miao, Cuixia
    [J]. IEEE ACCESS, 2019, 7 : 119082 - 119086
  • [29] Online Scheduling on Two Uniform Unbounded Parallel-Batch Machines to Minimize Makespan
    Jin-Jiang Yuan
    Li-Li Ren
    Ji Tian
    Ru-Yan Fu
    [J]. Journal of the Operations Research Society of China, 2019, 7 : 303 - 319
  • [30] Online scheduling on an unbounded parallel-batch machine and a standard machine to minimize makespan
    Fu, Ruyan
    Tian, Ji
    Yuan, Jinjiang
    Li, Ya
    [J]. INFORMATION PROCESSING LETTERS, 2014, 114 (04) : 179 - 184