Exact Localisations of Feedback Sets

被引:0
|
作者
Michael Hecht
机构
[1] Max Planck Institute of Molecular Cell Biology and Genetics,MOSAIC Group, Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, TU Dresden and Center for Systems Biology Dresden
[2] University of Leipzig,Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics
来源
关键词
Feedback set problem; Acyclic subgraph problem; Linear ordering problem; Elementary cycle; Simple cycle;
D O I
暂无
中图分类号
学科分类号
摘要
The feedback arc (vertex) set problem, shortened FASP (FVSP), is to transform a given multi digraph G = (V, E) into an acyclic graph by deleting as few arcs (vertices) as possible. Due to the results of Richard M. Karp in 1972 it is one of the classic NP-complete problems. An important contribution of this paper is that the subgraphs Gel(e), Gsi(e) of all elementary cycles or simple cycles running through some arc e ∈ E, can be computed in 𝓞|E|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}\big (|E|^{2}\big )$\end{document} and 𝓞(|E|4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(|E|^{4})$\end{document}, respectively. We use this fact and introduce the notion of the essential minor and isolated cycles, which yield a priori problem size reductions and in the special case of so called resolvable graphs an exact solution in 𝓞(|V||E|3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(|V||E|^{3})$\end{document}. We show that weighted versions of the FASP and FVSP possess a Bellman decomposition, which yields exact solutions using a dynamic programming technique in times 𝓞2m|E|4log(|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}\big (2^{m}|E|^{4}\log (|V|)\big )$\end{document} and 𝓞2nΔ(G)4|V|4log(|E|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}\big (2^{n}\Delta (G)^{4}|V|^{4}\log (|E|)\big )$\end{document}, where m ≤|E|−|V | + 1, n ≤ (Δ(G) − 1)|V |−|E| + 1, respectively. The parameters m, n can be computed in 𝓞(|E|3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(|E|^{3})$\end{document}, 𝓞(Δ(G)3|V|3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(\Delta (G)^{3}|V|^{3})$\end{document}, respectively and denote the maximal dimension of the cycle space of all appearing meta graphs, decoding the intersection behavior of the cycles. Consequently, m, n equal zero if all meta graphs are trees. Moreover, we deliver several heuristics and discuss how to control their variation from the optimum. Summarizing, the presented results allow us to suggest a strategy for an implementation of a fast and accurate FASP/FVSP-SOLVER.
引用
收藏
页码:1048 / 1084
页数:36
相关论文
共 50 条
  • [41] Feedback control and synchronization of Mandelbrot sets
    Zhang Yong-Ping
    CHINESE PHYSICS B, 2013, 22 (01)
  • [42] Feedback vertex sets in star graphs
    Wang, FH
    Wang, YL
    Chang, JM
    INFORMATION PROCESSING LETTERS, 2004, 89 (04) : 203 - 208
  • [43] Feedback control and synchronization of Mandelbrot sets
    张永平
    Chinese Physics B, 2013, 22 (01) : 114 - 118
  • [44] On Minimum Feedback Vertex Sets in Graphs
    Takaoka, Asahi
    Tayu, Satoshi
    Ueno, Shuichi
    2012 THIRD INTERNATIONAL CONFERENCE ON NETWORKING AND COMPUTING (ICNC 2012), 2012, : 429 - 434
  • [45] COMMENT ON MINIMUM FEEDBACK ARC SETS
    LAWLER, EL
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1964, CT11 (02): : 296 - &
  • [46] SUBANALYTIC SETS AND FEEDBACK-CONTROL
    SUSSMANN, HJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 31 (01) : 31 - 52
  • [47] Feedback edge sets in temporal graphs
    Haag, Roman
    Molter, Hendrik
    Niedermeier, Rolf
    Renken, Malte
    DISCRETE APPLIED MATHEMATICS, 2022, 307 : 65 - 78
  • [48] Feedback vertex sets in rotator graphs
    Hsu, CC
    Lin, HR
    Chang, HC
    Lin, KK
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2006, PT 5, 2006, 3984 : 158 - 164
  • [49] RETICULOPATHIE A LOCALISATIONS MULTIPLES
    BOUCHET
    GRIGNON, JL
    PRESSE MEDICALE, 1958, 66 (09): : 188 - 188
  • [50] ECHINOCOCCOSE A LOCALISATIONS MULTIPLES
    VIALATTE, J
    BINET, JP
    LANGLOIS, J
    PAUPE, J
    MEYER, B
    JOANNIDES, Z
    POTTEMAI.
    WILLARD, JJ
    ARCHIVES FRANCAISES DE PEDIATRIE, 1965, 22 (07): : 861 - +