Exact Localisations of Feedback Sets

被引:0
|
作者
Michael Hecht
机构
[1] Max Planck Institute of Molecular Cell Biology and Genetics,MOSAIC Group, Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, TU Dresden and Center for Systems Biology Dresden
[2] University of Leipzig,Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics
来源
关键词
Feedback set problem; Acyclic subgraph problem; Linear ordering problem; Elementary cycle; Simple cycle;
D O I
暂无
中图分类号
学科分类号
摘要
The feedback arc (vertex) set problem, shortened FASP (FVSP), is to transform a given multi digraph G = (V, E) into an acyclic graph by deleting as few arcs (vertices) as possible. Due to the results of Richard M. Karp in 1972 it is one of the classic NP-complete problems. An important contribution of this paper is that the subgraphs Gel(e), Gsi(e) of all elementary cycles or simple cycles running through some arc e ∈ E, can be computed in 𝓞|E|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}\big (|E|^{2}\big )$\end{document} and 𝓞(|E|4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(|E|^{4})$\end{document}, respectively. We use this fact and introduce the notion of the essential minor and isolated cycles, which yield a priori problem size reductions and in the special case of so called resolvable graphs an exact solution in 𝓞(|V||E|3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(|V||E|^{3})$\end{document}. We show that weighted versions of the FASP and FVSP possess a Bellman decomposition, which yields exact solutions using a dynamic programming technique in times 𝓞2m|E|4log(|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}\big (2^{m}|E|^{4}\log (|V|)\big )$\end{document} and 𝓞2nΔ(G)4|V|4log(|E|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}\big (2^{n}\Delta (G)^{4}|V|^{4}\log (|E|)\big )$\end{document}, where m ≤|E|−|V | + 1, n ≤ (Δ(G) − 1)|V |−|E| + 1, respectively. The parameters m, n can be computed in 𝓞(|E|3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(|E|^{3})$\end{document}, 𝓞(Δ(G)3|V|3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(\Delta (G)^{3}|V|^{3})$\end{document}, respectively and denote the maximal dimension of the cycle space of all appearing meta graphs, decoding the intersection behavior of the cycles. Consequently, m, n equal zero if all meta graphs are trees. Moreover, we deliver several heuristics and discuss how to control their variation from the optimum. Summarizing, the presented results allow us to suggest a strategy for an implementation of a fast and accurate FASP/FVSP-SOLVER.
引用
收藏
页码:1048 / 1084
页数:36
相关论文
共 50 条
  • [31] Exact controllability of waves in irregular open sets
    Burq, N
    ASYMPTOTIC ANALYSIS, 1997, 14 (02) : 157 - 191
  • [32] Sets of exact approximation order by rational numbers
    Bugeaud, Y
    MATHEMATISCHE ANNALEN, 2003, 327 (01) : 171 - 190
  • [33] LAMBDA(P) SETS AND EXACT MAJORANT PROPERTY
    EBENSTEI.SE
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 42 (02) : 533 - 534
  • [34] One-exact approximate Pareto sets
    Arne Herzel
    Cristina Bazgan
    Stefan Ruzika
    Clemens Thielen
    Daniel Vanderpooten
    Journal of Global Optimization, 2021, 80 : 87 - 115
  • [35] Respiratory localisations in Annelida
    Bohn, G
    COMPTES RENDUS DES SEANCES DE LA SOCIETE DE BIOLOGIE ET DE SES FILIALES, 1903, 55 : 306 - 308
  • [36] ON CYCLE PACKINGS AND FEEDBACK VERTEX SETS
    Chappell, Glenn G.
    Gimbel, John
    Hartman, Chris
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2014, 9 (02) : 17 - 34
  • [37] Feedback vertex sets in cubic multigraphs
    Gentner, Michael
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2015, 338 (12) : 2179 - 2185
  • [38] ON LOCATING MINIMUM FEEDBACK VERTEX SETS
    LLOYD, EL
    SOFFA, ML
    WANG, CC
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1988, 37 (03) : 292 - 311
  • [39] FINDING MINIMAL FEEDBACK VERTEX SETS
    RAMSDELL, JD
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1982, 29 (09): : 644 - 646
  • [40] MINIMAL FEEDBACK VERTEX SETS OF A DIGRAPH
    HARARY, F
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1975, 22 (10): : 839 - 840