Exact Localisations of Feedback Sets

被引:0
|
作者
Michael Hecht
机构
[1] Max Planck Institute of Molecular Cell Biology and Genetics,MOSAIC Group, Chair of Scientific Computing for Systems Biology, Faculty of Computer Science, TU Dresden and Center for Systems Biology Dresden
[2] University of Leipzig,Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics
来源
关键词
Feedback set problem; Acyclic subgraph problem; Linear ordering problem; Elementary cycle; Simple cycle;
D O I
暂无
中图分类号
学科分类号
摘要
The feedback arc (vertex) set problem, shortened FASP (FVSP), is to transform a given multi digraph G = (V, E) into an acyclic graph by deleting as few arcs (vertices) as possible. Due to the results of Richard M. Karp in 1972 it is one of the classic NP-complete problems. An important contribution of this paper is that the subgraphs Gel(e), Gsi(e) of all elementary cycles or simple cycles running through some arc e ∈ E, can be computed in 𝓞|E|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}\big (|E|^{2}\big )$\end{document} and 𝓞(|E|4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(|E|^{4})$\end{document}, respectively. We use this fact and introduce the notion of the essential minor and isolated cycles, which yield a priori problem size reductions and in the special case of so called resolvable graphs an exact solution in 𝓞(|V||E|3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(|V||E|^{3})$\end{document}. We show that weighted versions of the FASP and FVSP possess a Bellman decomposition, which yields exact solutions using a dynamic programming technique in times 𝓞2m|E|4log(|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}\big (2^{m}|E|^{4}\log (|V|)\big )$\end{document} and 𝓞2nΔ(G)4|V|4log(|E|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}\big (2^{n}\Delta (G)^{4}|V|^{4}\log (|E|)\big )$\end{document}, where m ≤|E|−|V | + 1, n ≤ (Δ(G) − 1)|V |−|E| + 1, respectively. The parameters m, n can be computed in 𝓞(|E|3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(|E|^{3})$\end{document}, 𝓞(Δ(G)3|V|3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(\Delta (G)^{3}|V|^{3})$\end{document}, respectively and denote the maximal dimension of the cycle space of all appearing meta graphs, decoding the intersection behavior of the cycles. Consequently, m, n equal zero if all meta graphs are trees. Moreover, we deliver several heuristics and discuss how to control their variation from the optimum. Summarizing, the presented results allow us to suggest a strategy for an implementation of a fast and accurate FASP/FVSP-SOLVER.
引用
收藏
页码:1048 / 1084
页数:36
相关论文
共 50 条
  • [1] Exact Localisations of Feedback Sets
    Hecht, Michael
    THEORY OF COMPUTING SYSTEMS, 2018, 62 (05) : 1048 - 1084
  • [2] The points and localisations of the topos of M-sets
    Pirashvili, Ilia
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2024, 18 (03) : 1103 - 1127
  • [3] Exact computation of minimum feedback vertex sets with relational algebra
    Berghammer, Rudolf
    Fronk, Alexander
    FUNDAMENTA INFORMATICAE, 2006, 70 (04) : 301 - 316
  • [4] On the sets of exact and approximate solutions
    Tabor, J
    Tabor, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (02) : 528 - 536
  • [5] Exact approximations for rough sets
    Sitnikov, D
    Ryabov, O
    Kravets, N
    Vilchinska, O
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2003, : 97 - 104
  • [6] Proximity spaces of exact sets
    Apostoli, PJ
    Kanda, A
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, PT 1, PROCEEDINGS, 2005, 3641 : 94 - 103
  • [7] On Fuzzy Exact Homotopy Sets
    Aras, Cigdem Gunduz
    Bayramov, Sadi
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (06) : 1009 - 1022
  • [8] Confidence Sets for Statistical Classification (II): Exact Confidence Sets
    Liu, Wei
    Bretz, Frank
    Hayter, Anthony J.
    STATS, 2019, 2 (04): : 439 - 446
  • [9] EXACT KRONECKER CONSTANTS OF HADAMARD SETS
    Hare, Kathryn E.
    Ramsey, L. Thomas
    COLLOQUIUM MATHEMATICUM, 2013, 130 (01) : 39 - 49
  • [10] CONTINUOUS AND EXACT SETS OF SPECIFIED CARDINALITY
    NICOL, SJ
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1989, 35 (03): : 211 - 224