Modified generalized multiscale sample entropy and surrogate data analysis for financial time series

被引:0
|
作者
Yue Wu
Pengjian Shang
Yilong Li
机构
[1] Beijing Jiaotong University,Department of Mathematics, School of Science
[2] Beijing Jiaotong University,School of Computer and Information Technology
来源
Nonlinear Dynamics | 2018年 / 92卷
关键词
Complexity; Symbolic representation; Similarity; Stock market; Generalized multiscale sample entropy;
D O I
暂无
中图分类号
学科分类号
摘要
Complexity in time series is an intriguing feature of living dynamical systems such as financial systems, with potential use for identification of system state. Multiscale sample entropy (MSE) is a popular method of assessing the complexity in various fields. Inspired by Tsallis generalized entropy, we rewrite MSE as the function of q parameter called generalized multiscale sample entropy and surrogate data analysis (qMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSE}$$\end{document}). qMSDiff curves are calculated with two parameters q and scale factor τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, which consist of differences between original and surrogate series qMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSE}$$\end{document}. However, the distance measure shows some limitation in detecting the complexity of stock markets. Further, we propose and discuss a modified method of generalized multiscale sample entropy and surrogate data analysis (qMSESS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSE}_\mathrm{SS}$$\end{document}) to measure the complexity in financial time series. The new method based on similarity and symbolic representation (qMSDiffSS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSDiff}_\mathrm{SS}$$\end{document}) presents a different way of time series patterns match showing distinct behaviors of complexity and qMSDiffSS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSDiff}_\mathrm{SS}$$\end{document} curves are also presented in two ways since there are two influence factors. Simulations are conducted over both synthetic and real-world data for providing a comparative study. The evaluations show that the modified method not only reduces the probability of inducing undefined entropies, but also performs more sensitive to series with different features and is confirmed to be robust to strong noise. Besides, it has smaller discrete degree for independent noise samples, indicating that the estimation accuracy may be better than the original method. Considering the validity and accuracy, the modified method is more reliable than the original one for time series mingled with much noise like financial time series. Also, we evaluate qMSDiffSS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSDiff}_\mathrm{SS}$$\end{document} for different areas of financial markets. The curves versus q of Asia are greater than those of America and Europe. Moreover, American stock markets have the lowest qMSDiffSS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSDiff}_\mathrm{SS}$$\end{document}, indicating that they are of low complexity. While the curves versus τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} help to research their complexity from a different aspect, the modified method makes us have access to analyzing complexity of financial time series and distinguishing them.
引用
收藏
页码:1335 / 1350
页数:15
相关论文
共 50 条
  • [41] Complexity Analysis of Time Series Based on Generalized Fractional Order Refined Composite Multiscale Dispersion Entropy
    Wang, Yu
    Shang, Pengjian
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (14):
  • [42] Multiscale time irreversibility analysis of financial time series based on segmentation
    Meng Xu
    Pengjian Shang
    Nonlinear Dynamics, 2018, 94 : 1603 - 1618
  • [43] Multiscale time irreversibility analysis of financial time series based on segmentation
    Xu, Meng
    Shang, Pengjian
    NONLINEAR DYNAMICS, 2018, 94 (03) : 1603 - 1618
  • [44] Bayesian multiscale analysis for time series data
    Oigard, Tor Arne
    Rue, Havard
    Godtliebsen, Fred
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (03) : 1719 - 1730
  • [45] MULTISCALE ENTROPY AND MULTISCALE TIME IRREVERSIBILITY ANALYSIS OF RR TIME SERIES DEPENDING ON AMBIENT TEMPERATURE
    Abellan-Aynes, Oriol
    Naranjo-Orellana, Jose
    Manonelles, Pedro
    Alacid, Fernando
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2020, 20 (05)
  • [46] Comment on "Multiscale entropy analysis of complex physiologic time series"
    Nikulin, VV
    Brismar, T
    PHYSICAL REVIEW LETTERS, 2004, 92 (08)
  • [47] The complexity-entropy causality plane based on multiscale power spectrum entropy of financial time series
    Zhang, Yali
    Shang, Pengjian
    CHAOS, 2018, 28 (12)
  • [48] Time series analysis using approximate entropy and sample entropy.
    Richman, J
    Moorman, R
    BIOPHYSICAL JOURNAL, 2000, 78 (01) : 218A - 218A
  • [49] Multiscale fractional-order approximate entropy analysis of financial time series based on the cumulative distribution matrix
    Yue Teng
    Pengjian Shang
    Jiayi He
    Nonlinear Dynamics, 2019, 97 : 1067 - 1085
  • [50] Multiscale fractional-order approximate entropy analysis of financial time series based on the cumulative distribution matrix
    Teng, Yue
    Shang, Pengjian
    He, Jiayi
    NONLINEAR DYNAMICS, 2019, 97 (02) : 1067 - 1085