Modified generalized multiscale sample entropy and surrogate data analysis for financial time series

被引:0
|
作者
Yue Wu
Pengjian Shang
Yilong Li
机构
[1] Beijing Jiaotong University,Department of Mathematics, School of Science
[2] Beijing Jiaotong University,School of Computer and Information Technology
来源
Nonlinear Dynamics | 2018年 / 92卷
关键词
Complexity; Symbolic representation; Similarity; Stock market; Generalized multiscale sample entropy;
D O I
暂无
中图分类号
学科分类号
摘要
Complexity in time series is an intriguing feature of living dynamical systems such as financial systems, with potential use for identification of system state. Multiscale sample entropy (MSE) is a popular method of assessing the complexity in various fields. Inspired by Tsallis generalized entropy, we rewrite MSE as the function of q parameter called generalized multiscale sample entropy and surrogate data analysis (qMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSE}$$\end{document}). qMSDiff curves are calculated with two parameters q and scale factor τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, which consist of differences between original and surrogate series qMSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSE}$$\end{document}. However, the distance measure shows some limitation in detecting the complexity of stock markets. Further, we propose and discuss a modified method of generalized multiscale sample entropy and surrogate data analysis (qMSESS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSE}_\mathrm{SS}$$\end{document}) to measure the complexity in financial time series. The new method based on similarity and symbolic representation (qMSDiffSS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSDiff}_\mathrm{SS}$$\end{document}) presents a different way of time series patterns match showing distinct behaviors of complexity and qMSDiffSS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSDiff}_\mathrm{SS}$$\end{document} curves are also presented in two ways since there are two influence factors. Simulations are conducted over both synthetic and real-world data for providing a comparative study. The evaluations show that the modified method not only reduces the probability of inducing undefined entropies, but also performs more sensitive to series with different features and is confirmed to be robust to strong noise. Besides, it has smaller discrete degree for independent noise samples, indicating that the estimation accuracy may be better than the original method. Considering the validity and accuracy, the modified method is more reliable than the original one for time series mingled with much noise like financial time series. Also, we evaluate qMSDiffSS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSDiff}_\mathrm{SS}$$\end{document} for different areas of financial markets. The curves versus q of Asia are greater than those of America and Europe. Moreover, American stock markets have the lowest qMSDiffSS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\hbox {MSDiff}_\mathrm{SS}$$\end{document}, indicating that they are of low complexity. While the curves versus τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} help to research their complexity from a different aspect, the modified method makes us have access to analyzing complexity of financial time series and distinguishing them.
引用
下载
收藏
页码:1335 / 1350
页数:15
相关论文
共 50 条
  • [21] Analysis of financial time series using multiscale entropy based on skewness and kurtosis
    Xu, Meng
    Shang, Pengjian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 490 : 1543 - 1550
  • [22] Multiscale multifractal multiproperty analysis of financial time series based on Renyi entropy
    Yang Yujun
    Li Jianping
    Yang Yimei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2017, 28 (02):
  • [23] Multiscale fractional order generalized information of financial time series based on similarity distribution entropy
    Xu, Meng
    Shang, Pengjian
    Qi, Yue
    Zhang, Sheng
    CHAOS, 2019, 29 (05)
  • [24] Multivariate generalized information entropy of financial time series
    Zhang, Yongping
    Shang, Pengjian
    Xiong, Hui
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 525 : 1212 - 1223
  • [25] Analysis of Complex Time Series using a Modified Multiscale Fuzzy Entropy Algorithm
    Han, Tian
    Shi, Cheng Cheng
    Wei, Zhen Bo
    Lin, Tian Ran
    2016 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS (IIKI), 2016, : 45 - 51
  • [26] Multiscale Renyi cumulative residual distribution entropy: Reliability analysis of financial time series
    Xu, Meng
    Shang, Pengjian
    Zhang, Sheng
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [27] MULTISCALE ENTROPY ANALYSIS OF TRAFFIC TIME SERIES
    Wang, Jing
    Shang, Pengjian
    Zhao, Xiaojun
    Xia, Jianan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (02):
  • [28] Multiscale entropy analysis of electroseismic time series
    Guzman-Vargas, L.
    Ramirez-Rojas, A.
    Angulo-Brown, F.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2008, 8 (04) : 855 - 860
  • [29] Efficient Methods for Calculating Sample Entropy in Time Series Data Analysis
    Bhaysar, Ronakben
    Helian, Na
    Sun, Yi
    Davey, Neil
    Steffert, Tony
    Mayor, David
    POSTPROCEEDINGS OF THE 9TH ANNUAL INTERNATIONAL CONFERENCE ON BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES (BICA 2018), 2018, 145 : 97 - 104
  • [30] Multiscale Symbolic Phase Transfer Entropy in Financial Time Series Classification
    Zhang, Ningning
    Lin, Aijing
    Shang, Pengjian
    FLUCTUATION AND NOISE LETTERS, 2017, 16 (02):