The parameter choice rules for weighted Tikhonov regularization scheme

被引:0
|
作者
G. D. Reddy
机构
[1] Indian Institute of Technology Hyderabad,Department of Mechanical and Aerospace Engineering
来源
关键词
Ill-posed problems; Weighted Tikhonov regularization; Parameter choice rules; 65F22; 65R30; 65R32;
D O I
暂无
中图分类号
学科分类号
摘要
The well-known approach to solve the ill-posed problem is Tikhonov regularization scheme. But, the approximate solution of Tikhonov scheme may not contain all the details of the exact solution. To circumference this problem, weighted Tikhonov regularization has been introduced. In this article, we propose two a posteriori parameter choice rules to choose the regularization parameter for weighted Tikhonov regularization and establish the optimal rate of convergence O(δα+1α+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\delta ^\frac{\alpha +1}{\alpha +2})$$\end{document} for the scheme based on these proposed rules. The numerical results are documented to demonstrate the significance of the theoretical results.
引用
下载
收藏
页码:2039 / 2052
页数:13
相关论文
共 50 条
  • [41] Finite dimensional realization of a parameter choice strategy for fractional Tikhonov regularization method in Hilbert scales
    Mekoth, Chitra
    George, Santhosh
    Jidesh, P.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (03): : 729 - 752
  • [42] OPTIMAL A POSTERIORI PARAMETER CHOICE FOR TIKHONOV REGULARIZATION FOR SOLVING NONLINEAR III-POSED PROBLEMS
    SCHERZER, O
    ENGL, HW
    KUNISCH, K
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (06) : 1796 - 1838
  • [43] Tikhonov regularization for weighted total least squares problems
    Wei, Yimin
    Zhang, Naimin
    Ng, Michael K.
    Xu, Wei
    APPLIED MATHEMATICS LETTERS, 2007, 20 (01) : 82 - 87
  • [44] On the choice of solution subspace for nonstationary iterated Tikhonov regularization
    Huang, Guangxin
    Reichel, Lothar
    Yin, Feng
    NUMERICAL ALGORITHMS, 2016, 72 (04) : 1043 - 1063
  • [45] On the choice of solution subspace for nonstationary iterated Tikhonov regularization
    Guangxin Huang
    Lothar Reichel
    Feng Yin
    Numerical Algorithms, 2016, 72 : 1043 - 1063
  • [46] Multi-parameter Tikhonov regularization — An augmented approach
    Kazufumi Ito
    Bangti Jin
    Tomoya Takeuchi
    Chinese Annals of Mathematics, Series B, 2014, 35 : 383 - 398
  • [47] Considering New Regularization Parameter-Choice Techniques for the Tikhonov Method to Improve the Accuracy of Electrocardiographic Imaging
    Chamorro-Servent, Judit
    Dubois, Remi
    Coudiere, Yves
    FRONTIERS IN PHYSIOLOGY, 2019, 10
  • [48] Aeromagnetic Compensation Based on Tikhonov Regularization with Limited L-curve Parameter-choice Algorithm
    Fu Mengyin
    Li Jie
    Wu Tailin
    Liu Tong
    Wang Meiling
    Wang Kai
    Kang Jiapeng
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1834 - 1838
  • [49] Fast Adaptive Regularization for Perfusion Parameter Computation Tuning the Tikhonov Regularization Parameter to the SNR by Regression
    Manhart, Michael
    Maier, Andreas
    Hornegger, Joachim
    Doerfler, Arnd
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 311 - 316
  • [50] Techniques for a Priori Choice of Regularizing Parameters in Tikhonov Regularization
    Iqbal, M.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2005, 3 (S05): : 15 - 33