The parameter choice rules for weighted Tikhonov regularization scheme

被引:0
|
作者
G. D. Reddy
机构
[1] Indian Institute of Technology Hyderabad,Department of Mechanical and Aerospace Engineering
来源
关键词
Ill-posed problems; Weighted Tikhonov regularization; Parameter choice rules; 65F22; 65R30; 65R32;
D O I
暂无
中图分类号
学科分类号
摘要
The well-known approach to solve the ill-posed problem is Tikhonov regularization scheme. But, the approximate solution of Tikhonov scheme may not contain all the details of the exact solution. To circumference this problem, weighted Tikhonov regularization has been introduced. In this article, we propose two a posteriori parameter choice rules to choose the regularization parameter for weighted Tikhonov regularization and establish the optimal rate of convergence O(δα+1α+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\delta ^\frac{\alpha +1}{\alpha +2})$$\end{document} for the scheme based on these proposed rules. The numerical results are documented to demonstrate the significance of the theoretical results.
引用
下载
收藏
页码:2039 / 2052
页数:13
相关论文
共 50 条
  • [31] A new choice rule for regularization parameters in Tikhonov regularization
    Ito, Kazufumi
    Jin, Bangti
    Zou, Jun
    APPLICABLE ANALYSIS, 2011, 90 (10) : 1521 - 1544
  • [32] MULTI-PARAMETER TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    METHODS AND APPLICATIONS OF ANALYSIS, 2011, 18 (01) : 31 - 46
  • [33] On an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems
    Jin, QN
    Hou, ZY
    NUMERISCHE MATHEMATIK, 1999, 83 (01) : 139 - 159
  • [34] Semi-heuristic parameter choice rules for Tikhonov regularisation with operator perturbations
    Hamarik, Uno
    Kangro, Urve
    Kindermann, Stefan
    Raik, Kemal
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2019, 27 (01): : 117 - 131
  • [35] On an a posteriori parameter choice strategy for tikhonov regularization of nonlinear ill-posed problems
    Jin Q.-N.
    Hou Z.-Y.
    Numerische Mathematik, 1999, 83 (1) : 139 - 159
  • [36] Parameter selections for Tikhonov regularization image restoration
    Zhang, Bin
    Jin, Fei
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 1419 - 1423
  • [37] Embedded techniques for choosing the parameter in Tikhonov regularization
    Gazzola, S.
    Novati, P.
    Russo, M. R.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (06) : 796 - 812
  • [38] A numerical study of heuristic parameter choice rules for total variation regularization
    Kindermann, Stefan
    Mutimbu, Lawrence D.
    Resmerita, Elena
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2014, 22 (01): : 63 - 94
  • [39] Improving the Spatial Solution of Electrocardiographic Imaging: A New Regularization Parameter Choice Technique for the Tikhonov Method
    Chamorro-Servent, Judit
    Dubois, Remi
    Potse, Mark
    Coudiere, Yves
    FUNCTIONAL IMAGING AND MODELLING OF THE HEART, 2017, 10263 : 289 - 300